
MPP–2004–102
hep–ph/0408283

SUSY Les Houches Accord I/O made easy

T. Hahn
Max-Planck-Institut für Physik

Föhringer Ring 6, D–80805 Munich, Germany

August 25, 2004

Abstract

A library for reading and writing data in the SUSY Les Houches Accord format
is presented. The implementation is in native Fortran 77. The data are contained in
a single array conveniently indexed by preprocessor statements.

1 Introduction

The SUSY Les Houches Accord (SLHA) has standardized and significantly simplified the
exchange of input and output parameters of SUSY models between such disparate appli-
cations as spectrum calculators and event generators.

While the SLHA specifications [1] include the precise formats for Fortran I/O, it is
nevertheless not entirely straightforward to read or write a file in SLHA format. The
present library provides the user with simple routines to read and write files in SLHA
format, as well as a few utility routines. One thing the library does not do is modify the
numbers, which means there is no routine to compute, say, a particular quantity at a new
scale.

Sect. 2 describes the organization of the data structures, Sect. 3 gives the reference
information for the library routines, Sect. 4 shows the usage in some examples, Sect. 5
contains download and build instructions, and Sect. 6 summarizes.

2 Data structures

The SLHA library is written in Fortran 77. All routines operate on a double-precision
array, slhadata, which is about the simplest conceivable data format for this purpose in
Fortran. For convenience of use, this array is accessed via preprocessor statements, so the
user never needs to memorize any actual indices for the slhadata array. A file containing
the preprocessor definitions must thus be included.

1

The slhadata array consists of a ‘static’ part containing the information from SLHA
BLOCK sections and a ‘dynamic’ part containing the information from SLHA DECAY sections.
The static part is indexed by preprocessor variables defined in SLHA.h, the dynamic part
is accessed through the SLHAGetDecay, SLHANewDecay, and SLHAAddDecay functions and
subroutines (see Sect. 3).

In addition, descriptive names for the PDG codes of the particles are declared in PDG.h.
These are needed e.g. to access the decay information.

2.1 SLHA blocks

The explicit indexing of the slhadata need not (and should not) be done by the user.
Rather, the members of the SLHA data structure are accessed through preprocessor vari-
ables. Tables 1, 2, 3, and 4 list the preprocessor variables defined in SLHA.h which follow
closely the definition of the Accord [1]. Note that preprocessor symbols are case sensitive.

As far as there is overlap, the names for the block members have been chosen similar
to the ones used in the MSSM model file of FeynArts [2]. The following index conventions
are employed in the Tables:

t = 1 . . . 4 (s)fermion type:

1 = (s)neutrinos,

2 = isospin-down (s)leptons,

3 = isospin-up (s)quarks,

4 = isospin-down (s)quarks

g = 1 . . . 3 (s)fermion generation

s = 1 . . . 2 number of sfermion mass-eigenstate,

in the absence of mixing 1 = L, 2 = R

c = 1 . . . 2 number of chargino mass-eigenstate

n = 1 . . . 4 number of neutralino mass-eigenstate

Matrices have a “Flat” array superimposed for convenience, in Fortran’s stan-
dard column-major convention, e.g. USf(1,1) ≡ USfFlat(1), USf(2,1) ≡ USfFlat(2),
USf(1,2) ≡ USfFlat(3), USf(2,2) ≡ USfFlat(4). This makes it possible to e.g. copy
such a matrix with just a single do-loop.

2.2 PDG particle identifiers

PDG.h defines the human-readable versions of the PDG codes listed in Table 5. These are
needed e.g. to access the decay information. At run time, the subroutine SLHAPDGName can
be used to translate a PDG code into a particle name (see Sect. 3.9).

2

Block name Offset and length Members
modsel OffsetModSel ModSel_Model

LengthModSel ModSel_Content
ModSel_GridPts
ModSel_Qmax
ModSel_PDG(i) i = 1 . . . 5

sminputs OffsetSMInputs SMInputs_AlfaMZ
LengthSMInputs SMInputs_GF

SMInputs_AlfasMZ
SMInputs_MZ
SMInputs_Mf(t) t = 2 . . . 4
SMInputs_Mtau ≡ SMInputs_Mf(2)
SMInputs_Mt ≡ SMInputs_Mf(3)
SMInputs_Mb ≡ SMInputs_Mf(4)

minpar OffsetMinPar MinPar_Q
LengthMinPar MinPar_M0

MinPar_Lambda ≡ MinPar_M0
MinPar_M12
MinPar_Mmess ≡ MinPar_M12
MinPar_M32 ≡ MinPar_M12
MinPar_TB
MinPar_signMUE
MinPar_A
MinPar_N5 ≡ MinPar_A
MinPar_cgrav

Table 1: Preprocessor variables defined in SLHA.h to access the slhadata array.

3

Block name Offset and length Members
extpar OffsetExtPar ExtPar_Q

LengthExtPar ExtPar_M1
ExtPar_M2
ExtPar_M3
ExtPar_Af(t) t = 2 . . . 4
ExtPar_Atau ≡ ExtPar_Af(2)
ExtPar_At ≡ ExtPar_Af(3)
ExtPar_Ab ≡ ExtPar_Af(4)
ExtPar_MHu2
ExtPar_MHd2
ExtPar_MUE
ExtPar_MA02
ExtPar_TB
ExtPar_MSL(g) g = 1 . . . 3
ExtPar_MSE(g) g = 1 . . . 3
ExtPar_MSQ(g) g = 1 . . . 3
ExtPar_MSU(g) g = 1 . . . 3
ExtPar_MSD(g) g = 1 . . . 3
ExtPar_N5(g) g = 1 . . . 3

mass OffsetMass Mass_Mf(t,g) t = 1 . . . 4,
LengthMass g = 1 . . . 3

Mass_MSf(s,t,g) s = 1 . . . 2,
t = 1 . . . 4,
g = 1 . . . 3

Mass_MZ
Mass_MW
Mass_Mh0
Mass_MHH
Mass_MA0
Mass_MHp
Mass_MNeu(n) n = 1 . . . 4
Mass_MCha(c) c = 1 . . . 2
Mass_MGl
Mass_MGrav

Table 2: Preprocessor variables defined in SLHA.h to access the slhadata array (cont’d).

4

Block name Offset and length Members
nmix OffsetNMix NMix_ZNeu(n1,n2) n1, n2 = 1 . . . 4

LengthNMix NMix_ZNeuFlat(i) i = 1 . . . 16
umix OffsetUMix UMix_UCha(c1,c2) c1, c2 = 1 . . . 2

LengthUMix UMix_UChaFlat(i) i = 1 . . . 4
vmix OffsetVMix VMix_VCha(c1,c2) c1, c2 = 1 . . . 2

LengthVMix VMix_VChaFlat(i) i = 1 . . . 4
SfMix_USf(s1,s2,t) s1, s2 = 1 . . . 2,

t = 2 . . . 4
SfMix_USfFlat(i,t) i = 1 . . . 4,

t = 2 . . . 4
staumix OffsetStauMix StauMix_USf(s1,s2) ≡ SfMix_USf(s1,s2,2)

LengthStauMix StauMix_USfFlat(i) ≡ SfMix_USfFlat(i,2)
stopmix OffsetStopMix StopMix_USf(s1,s2) ≡ SfMix_USf(s1,s2,3)

LengthStopMix StopMix_USfFlat(i) ≡ SfMix_USfFlat(i,3)
sbotmix OffsetSbotMix SbotMix_USf(s1,s2) ≡ SfMix_USf(s1,s2,4)

LengthSbotMix SbotMix_USfFlat(i) ≡ SfMix_USfFlat(i,4)

alpha OffsetAlpha Alpha_Alpha
LengthAlpha

hmix OffsetHMix HMix_Q
LengthHMix HMix_MUE

HMix_TB
HMix_VEV
HMix_MA02

gauge OffsetGauge Gauge_Q
LengthGauge Gauge_g1

Gauge_g2
Gauge_g3

msoft OffsetMSoft MSoft_Q
LengthMSoft MSoft_M1

MSoft_M2
MSoft_M3
MSoft_MHu2
MSoft_MHd2
MSoft_MSL(g) g = 1 . . . 3
MSoft_MSE(g) g = 1 . . . 3
MSoft_MSQ(g) g = 1 . . . 3
MSoft_MSU(g) g = 1 . . . 3
MSoft_MSD(g) g = 1 . . . 3

Table 3: Preprocessor variables defined in SLHA.h to access the slhadata array (cont’d).

5

Block name Offset and length Members
Af_Q(t) t = 2 . . . 4
Af_Af(t) t = 2 . . . 4

ae OffsetAe Ae_Q ≡ Af_Q(2)
LengthAe Ae_Atau ≡ Af_Af(2)

au OffsetAu Au_Q ≡ Af_Q(3)
LengthAu Au_At ≡ Af_Af(3)

ad OffsetAd Ad_Q ≡ Af_Q(4)
LengthAd Ad_Ab ≡ Af_Af(4)

Yf_Q(t) t = 2 . . . 4
Yf_Af(t) t = 2 . . . 4

ye OffsetYe Ye_Q ≡ Yf_Q(2)
LengthYe Ye_Atau ≡ Yf_Yf(2)

yu OffsetYu Yu_Q ≡ Yf_Q(3)
LengthYu Yu_At ≡ Yf_Yf(3)

yd OffsetYd Yd_Q ≡ Yf_Q(4)
LengthYd Yd_Ab ≡ Yf_Yf(4)

Table 4: Preprocessor variables defined in SLHA.h to access the slhadata array (cont’d).

fermions sfermions
PDG_nu_e PDG_snu_e1 PDG_snu_e2
PDG_electron PDG_selectron1 PDG_selectron2
PDG_up PDG_sup1 PDG_sup2
PDG_down PDG_sdown1 PDG_sdown2
PDG_nu_mu PDG_snu_mu1 PDG_snu_mu2
PDG_muon PDG_smuon1 PDG_smuon2
PDG_charm PDG_scharm1 PDG_scharm2
PDG_strange PDG_sstrange1 PDG_sstrange2
PDG_nu_tau PDG_snu_tau1 PDG_snu_tau2
PDG_tau PDG_stau1 PDG_stau2
PDG_top PDG_stop1 PDG_stop2
PDG_bottom PDG_sbottom1 PDG_sbottom2

bosons gauginos
PDG_h0 PDG_neutralino1
PDG_HH PDG_neutralino2
PDG_A0 PDG_neutralino3
PDG_Hp PDG_neutralino4
PDG_photon PDG_chargino1
PDG_Z PDG_chargino2
PDG_W PDG_gluino
PDG_gluon PDG_gravitino
PDG_graviton

Table 5: The PDG codes defined in PDG.h.

6

3 Routines provided by the SLHA library

3.1 SLHAClear

subroutine SLHAClear(slhadata)

double precision slhadata(nslhadata)

This subroutine sets all data in the slhadata array given as argument to the value invalid
(defined in SLHA.h). It is important that this is done before using slhadata, or else any
kind of junk that happens to be in the memory occupied by slhadata will later on be
interpreted as valid data.

3.2 SLHARead

subroutine SLHARead(error, slhadata, filename, abort)

integer error, abort

double precision slhadata(nslhadata)

character*(*) filename

This subroutine reads the data in SLHA format from filename into the slhadata array.
If the specified file cannot be opened, the function issues an error message and returns
error = 1. The abort flag governs what happens when superfluous text is read, i.e. text
that cannot be interpreted as SLHA data. If abort is 0, a warning is printed and reading
continues. Otherwise, reading stops at the offending line and error = 2 is returned.

3.3 SLHAWrite

subroutine SLHAWrite(error, slhadata,

& program, version, filename)

integer error

double precision slhadata(nslhadata)

character*(*) program, version, filename

This subroutine writes the data in slhadata to filename. The name and version of the
program that generates the output is given in program and version.

3.4 SLHAGetDecay

double precision function SLHAGetDecay(slhadata, parent_id,

& nchildren, child1_id, child2_id, child3_id, child4_id)

implicit none

double precision slhadata(*)

7

integer parent_id

integer nchildren, child1_id, child2_id, child3_id, child4_id

This function extracts the decay

parent_id → child1_id child2_id child3_id child4_id

from the slhadata array, or the value invalid (defined in SLHA.h) if no such decay can
be found. The parent and child particles are given by their PDG identifiers (see Sect. 2.2).
The return value is the total decay width if nchildren = 0, otherwise the branching ratio
of the specified channel.

Note that only the first nchildren of the childn_id are actually accessed and Fortran
allows to omit the remaining ones in the invocation (a strict syntax checker might issue a
warning, though). Thus, for instance,

Zbb = SLHAGetDecay(slhadata, PDG_Z, 2, PDG_bottom, -PDG_bottom)

is a perfectly legitimate way to extract the Z → bb̄ decay.

3.5 SLHANewDecay

integer function SLHANewDecay(slhadata, width, parent_id)

double precision slhadata(nslhadata), width

integer parent_id

This function initiates the setting of decay information for the particle specified by the
parent_id PDG code, whose total decay width is given by width. The integer index it
returns is needed to subsequently add individual decay modes with SLHAAddDecay. If the
fixed-length array slhadata becomes full, a warning is printed and zero is returned. If a
decay of the given particle is already present in slhadata, it is first removed.

3.6 SLHAAddDecay

subroutine SLHAAddDecay(slhadata, br, decay,

& nchildren, child1_id, child2_id, child3_id, child4_id)

double precision slhadata(nslhadata), br

integer decay

integer nchildren, child1_id, child2_id, child3_id, child4_id

This subroutine adds the decay mode

(parent_id) → child1_id child2_id child3_id child4_id

to the decay section previously initiated by SLHANewDecay. decay is the index obtained
from SLHANewDecay (which also sets the parent_id) and childn_id are the PDG codes

8

of the final-state particles. The branching ratio is given in br. If the fixed-length array
slhadata becomes full, a warning is printed and decay is set to zero.

If decay is zero, an overflow of slhadata in an earlier invocation is silently assumed
and no action is performed. It is therefore sufficient to check for overflow only once, after
setting all decay modes (unless, of course, one needs to pinpoint the exact location of the
overflow).

As with SLHAGetDecay (see Sect. 3.4), only the first nchildren of the childn_id are
actually accessed and Fortran allows to omit the remaining ones in the invocation.

3.7 SLHAExist

logical function SLHAExist(slhablock, length)

double precision slhablock(*)

integer length

This function tests whether a given SLHA block is not entirely empty, i.e. it returns .TRUE.
if at least one member of the block is valid. The SLHA blocks are most conveniently
accessed using the Offset... and Length... definitions (see Sect. 2), e.g.

if(SLHAExist(slhadata(OffsetMass), LengthMass)) ...

3.8 SLHAValid

logical function SLHAValid(slhablock, length)

double precision slhablock(*)

integer length

This function tests whether a given SLHA block consists entirely of valid data, i.e. it
returns .FALSE. if at least one member of the block is invalid. The SLHA blocks are most
conveniently accessed using the Offset... and Length... definitions (see Sect. 2), e.g.

if(SLHAValid(slhadata(OffsetNMix), LengthNMix)) ...

3.9 SLHAPDGName

subroutine SLHAPDGName(code, name)

integer code

character*(PDGLen) name

This subroutine translates a PDG code into a particle name. The sign of the PDG code is
ignored, hence the same name is returned for a particle and its antiparticle. The maximum
length of the name, PDGLen, is defined in PDG.h.

9

4 Examples

Consider the following example program, which just copies one SLHA file to another:

program copy_slha_file

implicit none

#include "SLHA.h"

integer error

double precision slhadata(nslhadata)

call SLHAClear(slhadata)

call SLHARead(error, slhadata, "infile.slha", 0)

if(error .ne. 0) stop "Read error"

call SLHAWrite(error, slhadata,

& "My Test Program", "1.0", "outfile.slha")

if(error .ne. 0) stop "Write error"

end

Already in this simple program a couple of things can be seen:

• the file SLHA.h must be included in every function or subroutine that uses the SLHA
routines and this must be done using the preprocessor #include (not Fortran’s
include), thus the program file should have the extension .F (capital F).

• slhadata must be declared as a double-precision array of length nslhadata.

• One should not continue with processing if a non-zero error flag is returned.

A more sensible application would add something to the slhadata before writing them
out again. The next little program pretends to compute the fermionic Z decays (by calling
a hypothetical subroutine MyCalculation) and adds them to slhadata:

program compute_decays

implicit none

#include "SLHA.h"

#include "PDG.h"

integer error, decay, t, g

double precision slhadata(nslhadata)

double precision total_width, br(4,3)

10

integer ferm_id(4,3)

data ferm_id /

& PDG_nu_e, PDG_electron, PDG_up, PDG_down,

& PDG_nu_mu, PDG_muon, PDG_charm, PDG_strange,

& PDG_nu_tau, PDG_tau, PDG_top, PDG_bottom /

call SLHAClear(slhadata)

call SLHARead(error, slhadata, "infile.slha", 0)

if(error .ne. 0) stop "Read error"

* compute the decays with parameters taken from the slhadata:

call MyCalculation(SMInputs_MZ, MinPar_TB, ...,

& total_width, br)

decay = SLHANewDecay(slhadata, total_width, PDG_Z)

do t = 1, 4

do g = 1, 3

call SLHAAddDecay(slhadata, br(t,g), decay,

& 2, ferm_id(t,g), -ferm_id(t,g))

enddo

enddo

call SLHAWrite(error, slhadata,

& "My Test Program", "2.0", "outfile.slha")

if(error .ne. 0) stop "Write error"

end

Demonstrated here is the access of SLHA data (SMInputs_MZ, MinPar_TB) and the setting
of decay information.

5 Building and Compiling

The SLHA library package can be downloaded as a gzipped tar archive from the Web site
http://www.feynarts.de/slha. After unpacking the archive, change into the directory
SLHALib-1.0 and type

./configure

make

A simple demonstration program (demo, source code in demo.F) is built together with the
library libSLHA.a.

11

Compiling a program that uses the SLHA library is in principle equally straightforward.
The only tricky thing is that one has to relax Fortran’s 72-column limit. This is because
even lines perfectly within the 72-column range may become longer after the preprocessor’s
substitutions. While essentially every Fortran compiler offers such an option, the name
is quite different. A glance at the man page should suffice to find out. Here are a few
common choices:

Compiler Platform/OS Option name
g77 any -ffixed-line-length-none

pgf77 Linux x86 -Mextend

f77 Tru64 Alpha -extend_source

f77 SunOS, Solaris -e

fort77 HP-UX +es

To compile and link your program, add this option and -Ipath -Lpath -lSLHA to the
compiler command line, where path is the location of the SLHA library, e.g.

pgf77 -Mextend -I$HOME/SLHALib-1.0 myprogram.F -L$HOME/SLHALib-1.0 -lSLHA

All externally visible symbols of the SLHA library start with the prefix SLHA and should
thus pretty much avoid symbol conflicts.

6 Summary

The SLHA library presented here provides simple functions to read and write files in SLHA
format. Data are kept in a single double-precision array and accessed through preprocessor
variables. The library is written in native Fortran 77 and is easy to build. The source code
is openly available at http://www.feynarts.de/slha and is distributed under the GNU
Library General Public License.

The author welcomes any kind of feedback, in particular bug and performance reports,
at hahn@feynarts.de.

References

[1] P. Skands et al., hep-ph/0311123.

[2] T. Hahn and C. Schappacher, Comp. Phys. Commun. 143 (2002) 54 [hep-ph/0105349].

12

