
FormCalc 9.9 User’s Guide
Mar 28, 2022 Thomas Hahn

Abstract: FormCalc is a Mathematica package which calculates and

simplifies tree-level and one-loop Feynman diagrams. It accepts di-

agrams generated with FeynArts 3 and returns the results in a way

well suited for further numerical or analytical evaluation.

2

The dreadful legal stuff: FormCalc is free software, but is not in the public domain. Instead it is covered by the GNU library

general public license. In plain English this means:

1) We don’t promise that this software works. (But if you find any bugs, please let us know!)

2) You can use this software for whatever you want. You don’t have to pay us.

3) You may not pretend that you wrote this software. If you use it in a program, you must acknowledge somewhere in your

publication that you’ve used our code.

If you’re a lawyer, you will rejoice at the exact wording of the license at http://gnu.org/licenses/lgpl.html .

FormCalc is available from http://feynarts.de/formcalc .

FeynArts is available from http://feynarts.de.

FORM is available from http://nikhef.nl/~form .

LoopTools is available from http://feynarts.de/looptools .

If you make this software available to others please provide them with this manual, too. There exists a low-traffic mailing list

where updates will be announced. Contact hahn@feynarts.de to be added to this list.

If you find any bugs, or want to make suggestions, or just write fan mail, address it to:

Thomas Hahn

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

Föhringer Ring 6

D–80805 Munich, Germany

e-mail: hahn@feynarts.de

CONTENTS 3

Contents

1 General Considerations 5

2 Installation 7

3 Generating the Diagrams 7

4 Algebraically Simplifying Diagrams 8

4.1 CalcFeynAmp . 8

4.2 DeclareProcess . 14

4.3 Clearing, Combining, Selecting . 16

4.4 Ingredients of Feynman amplitudes . 18

4.5 Handling Abbreviations . 22

4.6 More Abbreviations . 25

4.7 Resuming Previous Sessions . 27

4.8 Fermionic Matrix Elements . 28

4.9 Colour Matrix Elements . 31

4.10 Putting together the Squared Amplitude . 33

4.11 Polarization Sums . 34

4.12 Analytic Unsquared Amplitudes . 35

4.13 Checking Ultraviolet Finiteness . 36

4.14 Useful Functions . 38

5 Tools for the Numerical Evaluation 40

5.1 Generating code . 42

5.1.1 Libraries and Makefiles . 46

5.1.2 Partonic Composition . 47

5.1.3 Specifying model parameters . 48

5.2 Running the Generated Code . 53

5.2.1 Process definition . 55

5.2.2 Building up phase space . 56

5.2.3 Variables . 58

5.2.4 Cuts . 58

4 CONTENTS

5.2.5 Convolution . 60

5.2.6 Integration parameters . 61

5.2.7 Compiling and running the code . 62

5.2.8 Vectorization . 63

5.2.9 Scans over parameter space . 64

5.2.10 Log files, Data files, and Resume . 66

5.2.11 Shell scripts . 67

5.3 The Mathematica Interface . 68

5.3.1 Setting up the Interface . 69

5.3.2 The Interface Function in Mathematica 69

5.3.3 Return values, Storage of Data . 71

5.3.4 Using the Generated Mathematica Function 73

5.4 Renormalization Constants . 74

5.4.1 Definition of renormalization constants 74

5.4.2 Calculation of renormalization constants 76

5.5 Infrared Divergences and the Soft-photon Factor 79

6 Post-processing of the Results 80

6.1 Reading the data files into Mathematica . 80

6.2 Special graphics functions for Parameter Scans 82

7 Low-level functions for code output 84

7.1 File handling, Type conversion . 84

7.2 Writing Expressions . 85

7.3 Variable lists and Abbreviations . 90

7.4 Declarations . 94

7.5 Compatibility Functions . 95

5

1 General Considerations

With the increasing accuracy of experimental data, one-loop calculations have in many cases

come to be regarded as the lowest approximation acceptable to publish the results in a re-

spected journal. FormCalc goes a big step towards automating these calculations.

FormCalc is a Mathematica package which calculates and simplifies tree-level and one-loop

Feynman diagrams. It accepts diagrams generated with FeynArts 3 [Ha00] and returns the

results in a way well suited for further numerical (or analytical) evaluation.

Internally, FormCalc performs most of the hard work (e.g. working out fermionic traces) in

FORM, by Jos Vermaseren [Ve00]. A substantial part of the Mathematica code indeed acts as

a driver that threads the FeynArts amplitudes through FORM in an appropriate way. The

concept is rather straightforward: the symbolic expressions of the diagrams are prepared in

an input file for FORM, then FORM is run, and finally the results are read back into Math-

ematica. The interfacing is completely shielded from the user and is handled internally by

the FormCalc functions. The following diagram shows schematically how FormCalc interacts

with FORM:

Mathematica

PRO: user friendly

CON: slow on large expressions

FeynArts

amplitudes

FormCalc

results

FORM

PRO: very fast on polynomial expressions

CON: not so user friendly

input file MathLink

FormCalc

user

interface

internal

FormCalc

functions

FormCalc combines the speed of FORM with the powerful instruction set of Mathematica

and the latter greatly facilitates further processing of the results. Owing to FORM’s speed,

FormCalc can process, for example, the 1000-odd one-loop diagrams of W–W scattering in

the Standard Model in a few minutes on ordinary hardware.

6 1 GENERAL CONSIDERATIONS

One important aspect of FormCalc is that it automatically gathers spinor chains, scalar prod-

ucts of vectors, and antisymmetric tensors contracted with vectors, and introduces abbre-

viations for them. In calculations with non-scalar external particles where such objects are

ubiquitous, code produced from the FormCalc output (say, in Fortran) can be significantly

shorter and faster than without the abbreviations.

FormCalc can work in D and 4 dimensions. In D dimensions it uses standard dimensional

regularization to treat ultraviolet divergences, in 4 dimensions it uses the method of con-

strained differential renormalization, which at the one-loop level is equivalent to dimen-

sional reduction. Details on these methods can be found in [Ha98].

A one-loop calculation generally includes three steps:

• Create the topologies

Diagram • Insert fields

generation • Apply the Feynman rules

• Paint the diagrams

FeynArts

↓
• Contract indices

Algebraic • Calculate traces

simplification • Reduce tensor integrals

• Introduce abbreviations

FormCalc
↓

• Convert Mathematica output

Numerical to Fortran/C code

evaluation • Supply a driver program

• Implementation of the integrals } LoopTools

The automation of the calculation is fairly complete in FormCalc, i.e. FormCalc can eventually

produce a complete program to calculate the squared matrix element for a given process. The

only thing the user has to supply is a driver program which calls the generated subroutines.

The FormCalc distribution includes a directory of tools and sample programs which can be

modified and/or extended for a particular application. To demonstrate how a full process is

calculated, several non-trivial one-loop calculations in the electroweak Standard Model are

included in the FormCalc package.

It is nevertheless important to realize that the code is generated only at the very end of

the calculation (if at all), i.e. the calculation proceeds analytically as far as possible. At all

intermediate stages, the results are Mathematica expressions which are considerably easier to

modify than Fortran or C code.

7

2 Installation

To run FormCalc you need Mathematica 5 or above, a Fortran compiler, and gcc, the GNU C

compiler. FormCalc comes in a compressed tar archive FormCalc-n.m.tar.gz. To install it,

create a directory for FormCalc and unpack the archive there, e.g.

gunzip -c FormCalc-n.m.tar.gz | tar xvf -

cd FormCalc-n.m

./compile

The last line compiles the C programs that come with FormCalc. The compile script puts the

binaries in a system-dependent directory, e.g. Linux-x86-64. A single FormCalc installation

can thus be NFS-mounted on different systems once compile has been run on each.

3 Generating the Diagrams

FormCalc calculates diagrams generated by FeynArts Version 3 or above. Do not use the Feyn-

Arts function ToFA1Conventions to convert the output of CreateFeynAmp to the old conven-

tions of FeynArts 1.

FormCalc can be loaded together with FeynArts into one Mathematica session. The FeynArts

results thus need not be saved in a file before calculating them with FormCalc.

FormCalc can deal with any mixture of fully inserted diagrams and generic diagrams

with insertions. The former are produced by FeynArts if only one level is requested (via

InsertionLevel, AmplitudeLevel, or PickLevel; see the FeynArts manual). While both

types of input eventually produce the same results, it is important to understand that it

is the generic amplitude which is the most ‘costly’ part to simplify, so using the latter type of

diagrams, where many insertions are derived from one generic amplitude, can significantly

speed up the calculation.

Usually it is also helpful to organize the diagrams into classes like self-energies, vertex cor-

rections and box corrections; it will also make the amplitudes easier to handle since it reduces

their size.

8 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

4 Algebraically Simplifying Diagrams

4.1 CalcFeynAmp

FeynArts always produces purely symbolic amplitudes and refrains from simplifying them

in any way so as not to be restricted to a certain class of theories. The resulting expressions

cannot be used directly e.g. in a Fortran program, but must first be simplified algebraically.

The function for this is CalcFeynAmp.

CalcFeynAmp[a1, a2, . . .] calculate the sum of amplitudes a1 + a2 + . . .

CalcFeynAmp performs the following simplifications:

• indices are contracted as far as possible,

• fermion traces are evaluated,

• open fermion chains are simplified using the Dirac equation,

• colour structures are simplified using the SU(N) algebra,

• the tensor reduction is performed,

• local terms are added*,

• the results are partially factored,

• abbreviations are introduced.

The output of CreateFeynAmp can be fed directly into CalcFeynAmp. Technically, this means

that the arguments of CalcFeynAmp must be FeynAmpList objects. CalcFeynAmp is invoked

as

amps = CreateFeynAmp[...];

result = CalcFeynAmp[amps]

The results are returned in the form

Amp[in -> out][r1, r2, . . .]

*In D dimensions, the divergent integrals are expanded in ε = (4 − D)/2 up to order ε0 and the 1
ε poles are

subtracted. The 1
ε poles give rise to local terms when multiplied with D’s from outside the integral (e.g. from

a gµµ). In 4 dimensions, local terms are added depending on the contractions of indices of the tensor integrals

according to the prescription of constrained differential renormalization [dA98].

4.1 CalcFeynAmp 9

The lists in and out in the head of Amp specify the the external particles to which the result

belongs. The presence of a particle’s mass in the header does not imply that the amplitudes

were calculated for on-shell particles.

The actual result is split into parts r1, r2, . . . , such that index sums (marked by SumOver)

always apply to the whole of each part. It is possible to extend this splitting also to powers

of coupling constants, such that part ri has a definite coupling order. To this end one needs

to wrap the coupling constants of interest in PowerOf, for example

CalcFeynAmp[amp /. g -> g PowerOf[g]]

The function PowerOf is there only to keep track of the coupling order and can be replaced

by 1 at the end of the calculation.

The full result – the sum of the parts – can trivially be recovered by applying Plus to the

outcome of CalcFeynAmp, i.e. Plus@@ CalcFeynAmp[amps].

CalcFeynAmp has the following options:

option default value

CalcLevel Automatic which level of the amplitude to select

(Automatic selects Particles level, if

available, otherwise Classes level)

Dimension D the space-time dimension in which the

calculation is performed (D, 4, or 0)

NoCostly False whether to turn off potentially

time-consuming simplifications in

FORM

FermionChains Weyl how to treat external fermion chains

(Weyl, Chiral, or VA)

FermionOrder Automatic the preferred ordering of external

spinors in Dirac chains

Evanescent False whether to keep track of fermionic

operators across Fierz transformations

InsertionPolicy Default how the level insertions are processed

SortDen True whether to sort the denominators of the

loop integrals

PaVeReduce False whether to analytically reduce tensor to

scalar integrals

10 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

option default value

SimplifyQ2 True whether to simplify q2 in the numerator

OPP 100 the N in N-point function above which

OPP loop integrals are emitted

OPPQSlash False whether to introduce µ̃ also on /q

Gamma5Test False whether to substitute

γ5 → γ5(1 + Gamma5Test(D − 4))

Gamma5ToEps False whether to substitute

γ5 → 1
4!εµνρσγ

µγνγργσ in fermion

traces

NoExpand {} sums containing any of the symbols in

the list are not expanded

NoBracket {} symbols not to be included in the

bracketing in FORM

MomRules {} extra rules for transforming momenta

PreFunction Identity a function applied to the amplitudes

before any simplification

PostFunction Identity a function applied to the amplitudes

after all simplifications

FileTag "amp" the middle part of the temporary FORM

file’s name

RetainFile False whether to retain the temporary FORM

input file

EditCode False whether to display the FORM code in

an editor before sending it to FORM

CalcLevel is used to select the desired level in the calculation. In general a diagram can have

both Classes and Particles insertions. The default value Automatic selects the deepest

level available, i.e. Particles level, if available, otherwise Classes level.

Dimension specifies the space-time dimension in which to perform the calculation. It can

take the values D and 4. This is a question of how UV-divergent expressions are treated.

The essential points of both methods are outlined in the following. For a more thorough

discussion see [Ha98].

• Dimension -> D corresponds to dimensional regularization [tH72]. Dimensionally

regularizing an expression involves actually two things: analytic continuation of the

momenta (and other four-vectors) in the number of dimensions, D, and an extension

4.1 CalcFeynAmp 11

to D dimensions of the Lorentz covariants (γµ, gµν, etc.). The second part is achieved

by treating the covariants as formal objects obeying certain algebraic relations. Prob-

lems only appear for identities that depend on the 4-dimensional nature of the objects

involved. In particular, the extension of γ5 to D dimensions is problematic. FormCalc

employs a naive scheme [Ch79] and works with an anticommuting γ5 in all dimen-

sions.

• Dimension -> 4 selects constrained differential renormalization (CDR) [dA98]. This

technique cures UV divergences by substituting badly-behaved expressions by deriva-

tives of well-behaved ones in coordinate space. The regularized coordinate-space ex-

pressions are then Fourier-transformed back to momentum space. CDR works com-

pletely in 4 dimensions. At one-loop level it has been shown [Ha98] to be equivalent

to regularization by dimensional reduction [Si79], which is a modified version of di-

mensional regularization: while the integration momenta are still D-dimensional as in

dimensional regularization, all other tensors and spinors are kept 4-dimensional. Al-

though the results are the same, it should be stressed that the conceptual approach in

CDR is quite different from dimensional reduction.

• Dimension -> 0 keeps the whole amplitude D-dimensional. No rational terms are

added and the D-dependency is expressed through Dminus4.

NoCostly switches off simplifications in the FORM code which are typically fast but can

cause ‘endless’ computations on certain amplitudes.

FermionChains determines how fermion chains are returned. Weyl, the default, selects Weyl

chains. Chiral and VA select Dirac chains in the chiral (PL/PR) and vector/axial-vector

(1l/γ5) decomposition, respectively. Note that to fully evaluate amplitudes containing Dirac

chains, helicity matrix elements must be computed with HelicityME. For more details on

the conceptual treatment of external fermions in FormCalc, see [Ha02, Ha04a].

The FermionOrder option means different things for Dirac and for Weyl chains:

For Dirac spinor chains (FermionChains -> Chiral or VA) FermionOrder determines the

ordering of the external fermions within the chains. Choices are None, Fierz, Automatic,

Colour, or an explicit ordering, e.g. {2, 1, 4, 3} (corresponding to fermion chains of the

form 〈2| Γ |1〉 〈4| Γ ′ |3〉). None applies no reordering. Fierz applies the Fierz identities [Ni05]

twice, thus simplifying the chains but keeping the original order. Colour applies the order-

ing of the external colour indices (after simplification) to the spinors. Automatic chooses a

lexicographical ordering (small numbers before large numbers).

For Weyl spinor chains (FermionChains -> Weyl) FermionOrder determines the structuring

of the amplitude with respect to the fermion chains: Setting FermionOrder -> Mat wraps

the Weyl fermion chains in Mat, like their Dirac counterpart, so that they end up at the outer-

12 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

most level of the amplitude and their coefficients can be read off easily. The matrix elements

of the form Mat[Fi, Fj] are computed with the WeylME function.

The Evanescent option toggles whether fermionic operators are tracked across Fierz trans-

formations by emitting terms of the form Evanescent[original operator, Fierzed operator].

InsertionPolicy specifies how the level insertions are applied and can take the values

Begin, Default, or an integer. Begin applies the insertions at the beginning of the FORM

code (this ensures that all loop integrals are fully symmetrized). Default applies them af-

ter simplifying the generic amplitudes (this is fastest). An integer does the same, except

that insertions with a LeafCount larger than that integer are inserted only after the ampli-

tude comes back from FORM (this is a workaround for the rare cases where the FORM code

aborts due to very long insertions).

SortDen determines whether the denominators of loop integrals shall be sorted. This is

usually done to reduce the number of loop integrals appearing in an amplitude. Sorting

may be turned off for testing and in few cases may even lead to shorter amplitudes.

PaVeReduce governs the tensor reduction. False retains the one-loop tensor-coefficient func-

tions. Raw reduces them to scalar integrals but keeps the Gram determinants in the denomi-

nator in terms of dot products. True simplifies the Gram determinants using invariants.

SimplifyQ2 controls simplification of terms involving the integration momentum q squared.

If set to True, powers of q2 in the numerator are cancelled by a denominator, except for

OPP integrals, where conversely lower-N integrals are put on a common denominator with

higher-N integrals to reduce OPP calls, as in: N2/(D0D1) + N3/(D0D1D2) → (N2D2 +

N3)/(D0D1D2).

OPP specifies an integer N starting from which an N-point function is treated with OPP

methods. For example, OPP -> 4 means that A, B, C functions are reduced with Passarino–

Veltman and D and up with OPP. A negative N indicates that the rational terms for the OPP

integrals shall be added analytically whereas otherwise their computation is left to the OPP

package (CutTools or Samurai).

The integration momentum q starts life as a D-dimensional object. In OPP, any q2 surviving

SimplifyQ2 is substituted by q2 − µ̃2, after which q is considered 4-dimensional. The di-

mensionful scale µ̃ enables the OPP libraries to reconstruct the R2 rational terms. OPPQSlash

extends this treatment to the /q on external fermion chains, i.e. also substitutes /q → /q + iγ5µ̃,

where odd powers of µ̃ are eventually set to zero.

Gamma5Test -> True substitutes each γ5 by γ5(1 + Gamma5Test(D − 4)) and it can be tested

whether the final result depends on the variable Gamma5Test (which it shouldn’t).

Gamma5ToEps -> True substitutes all γ5 in fermion traces by 1
4!εµνρσγ

µγνγργσ . This effec-

tively implements the ’t Hooft–Veltman–Breitenlohner–Maisonγ5-scheme. External fermion

chains are intentionally exempt since at least the Weyl formalism needs chiral chains. Take

4.1 CalcFeynAmp 13

care that due to the larger number of Lorentz indices the computation time may increase

significantly.

NoExpand prohibits the expansion of sums containing certain symbols. In certain cases, ex-

pressions can become unnecessarily bloated if all terms are fully expanded, as FORM always

does. For example, if gauge eigenstates are rotated into mass eigenstates, the couplings typ-

ically contain linear combinations of the form Ui1c1 + Ui2c2. It is not difficult to see that the

number of terms generated by the full expansion of such couplings can be considerable, in

particular if several of them appear in a diagram. NoExpand turns off the automatic expan-

sion, in this example one would select NoExpand -> U.

NoBracketprevents the given symbols to be included in the internal ‘multiplication brackets’

in FORM. This bracketing is done for performance but prevents the symbols from partaking

in further evaluation.

MomRules specifies a set of rules for transforming momenta. The notation is that of the final

amplitude, i.e. k1, . . . , kn for the momenta, e1, . . . , en for the polarization vectors.

PreFunction and PostFunction specify functions to be applied to the amplitude before and

after all simplifcations have been made. These options are typically used to apply a function

to all amplitudes in a calculation, even in indirect calls to CalcFeynAmp, such as through

CalcRenConst.

RetainFile and EditCode are options used for debugging purposes. The temporary file

to which the input for FORM is written is not removed when RetainFile -> True is set.

The name of this file is typically something like fc-amp-1.frm. The middle part, amp, can

be chosen with the FileTag option, to disambiguate files from different CalcFeynAmp calls.

EditCode is more comfortable in that it places the temporary file in an editor window before

sending it to FORM. The command line for the editor is specified in the variable $Editor.

EditCode -> Modal invokes the $EditorModal command, which is supposed to be modal

(non-detached), i.e. continues only after the editor is closed, thus continuing with possibly

modified FORM code.

In truly obnoxious cases the function ReadFormDebug[bits] can be used to enable debug-

ging output on stderr for subsequent CalcFeynAmp calls according to the bits bit pattern.

ReadFormDebug[bits, file] writes the output to file instead. For currently defined bit patterns

and their meaning please see the header of ReadForm.tm.

14 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

FormPre[amp] a function to set up the following Form*

simplification functions, amp is the raw amplitude

FormSub[subexpr] a function applied to subexpressions extracted by

FORM

FormDot[dotprods] a function applied to combinations of dot products

by FORM

FormMat[matcoeff] a function applied to the coefficients of matrix

elements (Mat[...]) in the FORM output

FormNum[numfunc] a function applied to numerator functions in the

FORM output (OPP only)

FormQC[qcoeff] a function applied to loop-momentum-independent

parts of the OPP numerator in the FORM output

FormQF[qfunc] a function applied to loop-momentum-dependent

parts of the OPP numerator in the FORM output

$FormAbbrDepth minimum depth an expression has to have to be

abbreviated

CalcFeynAmp wraps the above functions around various parts of the FORM output for sim-

plification upon return to Mathematica. These are typically relatively short expressions

which can be simplified efficiently in Mathematica. The default settings try to balance exe-

cution time against simplification efficiency. Occasionally, though, Mathematica will spend

excessive time on simplification and in this case one or several of the above should be rede-

fined, e.g. set to Identity. Alternately, one can use FormCalc’s Profile function to narrow

down performance problems, as in: FormMat = Profile[FormMat].

4.2 DeclareProcess

For the calculation of an amplitude, many definitions have to be set up internally. This

happens in the DeclareProcess function.

DeclareProcess[a1, a2, . . .] set up internal definitions for the calculation of the

amplitudes a1, a2, . . .

Usually it is not necessary to invoke this function explicitly, as CalcFeynAmp does so. All

DeclareProcess options can be specified with CalcFeynAmp and are passed on.

Functions that need the internal definitions set up by DeclareProcess are CalcFeynAmp,

HelicityME, and PolarizationSum. Invoking DeclareProcess directly could be useful e.g.

if one needs to change the options between calls to CalcFeynAmp and HelicityME, or if one

4.2 DeclareProcess 15

wants to call HelicityME in a new session without a previous CalcFeynAmp.

The output of DeclareProcess is a FormAmp object.

FormAmp[proc][amps] a preprocessed form of the FeynArts amplitudes

amps for process proc

DeclareProcess has the following options. They are also accepted by CalcFeynAmp in di-

rect invocations (and passed on to DeclareProcess) but cannot be set permanently using

SetOptions[CalcFeynAmp,...] as as they are not CalcFeynAmp options.

option default value

OnShell True whether the external momenta are on

shell, i.e. k2
i = m2

i

Invariants True whether to introduce kinematical

invariants like the Mandelstam

variables

Transverse True whether polarization vectors should be

orthogonal to the corresponding

momentum, i.e. εµi ki,µ = 0

Normalized True whether the polarization vectors should

be assumed normalized, i.e. εµi ε
∗
i,µ = −1

InvSimplify True whether to simplify combinations of

invariants as much as possible

MomElim Automatic how to apply momentum conservation

DotExpand False whether to expand terms collected for

momentum elimination

Antisymmetrize True whether Dirac chains shall be

antisymmetrized

OnShell determines whether the external particles are on their mass shell, i.e. it sets k2
i =

m2
i where ki is the ith external momentum and mi the corresponding mass. The special

value ExceptDirac works like True except that the Dirac equation is not applied to on-shell

momenta, i.e. /ki inside fermion chains are not substituted by ±mi.

Invariants -> True instructs CalcFeynAmp to introduce kinematical invariants. In the case

of a 2 → 2 process, these are the familiar Mandelstam variables.

Transverse -> True enforces orthogonality of the polarization vectors of external vector

bosons and their corresponding momentum, i.e. it sets εi,µkµi = 0 where ki and εi are the ith

external momentum and polarization vector, respectively.

16 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

Normalized -> True allows CalcFeynAmp to exploit the normalization of the polarization

vectors, i.e. set εµi ε
∗
i,µ = −1.

The last four options can concisely be summarized as

Option Action

OnShell -> True ki · ki = m2
i

Mandelstam -> True ki · k j = ± 1
2

[
(s|t)i j − m2

i − m2
j

]

Transverse -> True εi · ki = 0

Normalized -> True εi ·ε∗i = −1

InvSimplify controls whether CalcFeynAmp should try to simplify combinations of invari-

ants as much as possible.

MomElim controls in which way momentum conservation is used to eliminate momenta.

False performs no elimination, an integer between 1 and the number of legs eliminates the

specified momentum, and Automatic tries all substitutions and chooses the one resulting in

the fewest terms.

DotExpanddetermines whether the terms collected for momentum elimination are expanded

again. This prevents kinematical invariants from appearing in the abbreviations but typi-

cally leads to poorer simplification of the amplitude.

Antisymmetrize determines whether to antisymmetrize Dirac chains. This does not affect

Weyl chains, i.e. has an effect only together with FermionChains-> Chiral or VA. Antisym-

metrized chains carry a negative chirality identifier, e.g. DiracChain[-6,µ,ν] stands for

PR
1
2 (γµγν −γνγµ).

4.3 Clearing, Combining, Selecting

CalcFeynAmp needs no declarations of the kinematics of the underlying process; it uses the

information FeynArts hands down. This is convenient, but it also requires certain care on

the side of the user because of the abbreviations FormCalc automatically introduces in the

result (see Sect. 4.5). Owing to the presence of momenta and polarization vectors, abbrevi-

ations introduced for different processes will in general have different values, even if they

have the same analytical form. To ensure that processes with different kinematics cannot

be mixed accidentally, CalcFeynAmp refuses to calculate amplitudes belonging to a process

whose kinematics differ from those of the last calculation unless ClearProcess[] is invoked

in between.

ClearProcess[] removes internal definitions before calculating a

new process

4.3 Clearing, Combining, Selecting 17

The Combine function combines amplitudes. It works before and after CalcFeynAmp, i.e.

on either FeynAmpList or Amp objects. When trying to combine amplitudes from different

processes, Combine issues a warning only, but does not refuse to work as CalcFeynAmp.

Combine[amp1, amp2, . . .] combines amp1, amp2, . . .

The following two functions are helpful to select diagrams.

FermionicQ[d] True if diagram d contains fermions

DiagramType[d] returns the number of propagators in diagram d not

belonging to the loop

FermionicQ is used for selecting diagrams that contain fermions, i.e.

ferm = CalcFeynAmp[Select[amps, FermionicQ]]

DiagramType returns the number of propagators not containing the integration momentum.

To see how this classifies diagrams, imagine a 2 → 2 process without self-energy insertions

on external legs (i.e. in an on-shell renormalization scheme). There, DiagramType gives 2 for

a self-energy diagram, 1 for a vertex-correction diagram, and 0 for a box diagram, so that for

instance

vert = CalcFeynAmp[Select[amps, DiagramType[#] == 1 &]]

calculates all vertex corrections. DiagramType is of course only a very crude way of clas-

sifying diagrams and not nearly as powerful as the options available in FeynArts, like

ExcludeTopologies.

Individual legs can be taken off-shell with the function OffShell.

OffShell[amp, i -> µi, . . .] enforce the relation p2
i = µ2

i on the amplitudes amp.

OffShell[amp, i -> µi, j -> µ j, . . .] takes legs i, j, . . . off-shell by substituting the true

on-shell relation p2
i = m2

i by p2
i = µ2

i . This is different from setting the CalcFeynAmp option

OnShell -> False which takes all legs off-shell by not using p2
i = m2

i at all.

Finally, the following two functions serve to add factors to particular diagrams.

MultiplyDiagrams[amps, f] multiply the diagrams in amps with the factor

returned by the function f

TagDiagrams[amp] multiply each diagram in amp with the identifier

Diagram[n], where n is the diagram’s number

18 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

MultiplyDiagrams[amp, f] multiplies the diagrams in amp with factors depending on their

contents. The factor is determined by the function f which is applied to each diagram either

as f [amplitude], for fully inserted diagrams, or f [generic amplitude, insertion]. For example,

to add a QCD enhancement factor to all diagrams containing a quark mass, the following

function could be used as MultiplyDiagrams[QCDfactor][amps]:

QCDfactor[args__] := QCDenh /; !FreeQ[{args}, Mf[3|4, __]]

_QCDfactor = 1

TagDiagrams is a special case of MultiplyDiagrams and multiplies each diagram with an

identifier of the form Diagram[n], where n is the diagram’s running number. This provides

a very simple mechanism to identify the origin of terms in the final amplitude.

4.4 Ingredients of Feynman amplitudes

The results of CalcFeynAmp contain the following symbols:

Momenta and polarization vectors are consecutively numbered, i.e. the incoming momenta

are numbered k[1]. . . k[nin] and the outgoing momenta k[nin + 1]. . . k[nin + nout].

k[n] nth external momentum

e[n], ec[n] nth polarization vector and its conjugate

eT[n], eTc[n] nth polarization tensor and its conjugate

Pair[p, q] scalar product of the four-vectors p and q

Eps[p, q, r, s] −iεµνρσpµqνrρsσ where ε is the totally antisymmetric

Levi-Civita tensor in 4 dimensions with sign

convention ε0123 = +1

Den[k2,m2] the denominator 1/(k2 − m2)

Delta[i, j] the Kronecker delta δij

IGram[d] the denominator arising from the reduction of a

tensor integral, equivalent to 1/d

Finite a symbol multiplied with the local terms resulting

from D · (divergent integral)

Note the extra factor −i in the definition of Eps which is included to reduce the number of

explicit i’s in the final result.

About the use of Finite: Whenever a divergent loop integral is multiplied by D (coming e.g.

as gµµ from a self-contracted coupling), local terms arise because the ε in D = 4 − 2ε cancels

4.4 Ingredients of Feynman amplitudes 19

the 1/ε-divergence of the integral, schematically:

D · (loop integral) = 4 · (loop integral) + (local term) .

‘Local’ refers to the fact that these terms contain no loop integral anymore.

In dimensional regularization, a popular way of checking finiteness of an amplitude is to

substitute the loop integrals by their divergent parts and test whether the coefficients of ε−1

andε−2 work out to zero. In LoopTools, for example, this is effected by setting LTLAMBDA = −1

and −2, respectively.

The local terms would quite obviously spoil this cancellation and must be set to zero during

the check. To make this possible, CalcFeynAmp multiplies the local terms it generates with

the symbol Finite, such that Finite = 1 normally but Finite = 0 when checking finiteness.

S Mandelstam variable s = (k[1]+ k[2])2

T Mandelstam variable t = (k[1]− k[3])2

U Mandelstam variable u = (k[2]− k[3])2

Sij invariant of the invariant-mass type,

Sij = (k[i]+ k[j])2

Tij invariant of the momentum-transfer type,

Tij = (k[i]− k[j])2

SU(N) structures are always simplified so that only chains of generators (SUNT) remain.

SUNT[a, b, . . . , i, j] the product (TaTb · · ·)ij of SU(N)-generators, where

a, b, . . . are gluon indices (1. . . 8) and i and j are

colour indices (1. . . 3); note that SUNT[i, j]

represents the identity δij in colour space

SUNT[a, b, . . . , 0, 0] the trace Tr(TaTb · · ·)

The N in SU(N) is specified with the variable SUNN.

variable default value

SUNN 3 the N in SU(N)

Fermionic structures like spinor chains are returned as a DiracChain or WeylChain object.

Lorentz indices connecting two DiracChains are denoted by Lor[n], all other Lorentz in-

dices are implicit, e.g. in the contraction with a vector.

20 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

DiracChain the antisymmetrized product of Dirac matrices.

The actual Dirac matrix with which an argument is

contracted is not written out, e.g. k[1] stands for

γµ k[1]
µ inside a DiracChain.

inside a DiracChain:

1 1l

5 γ5

6 the chirality projector PR = ω+ = (1l + γ5)/2

7 the chirality projector PL = ω− = (1l −γ5)/2

-i antisymmetrized chain, i = 1, 5, 6, 7 as above

Lor[n] a Lorentz index connecting two DiracChains

Spinor[p,m, 1] particle spinor u(p) for which (/p − m)u(p) = 0

Spinor[p,m, -1] antiparticle spinor v(p) for which (/p + m)v(p) = 0

It should be especially noted that DiracChains, unlike WeylChains, are antisymmetrized

starting from FormCalc Version 6. Antisymmetrized chains are typically more convenient for

analytical purposes, for example there is the correspondence DiracChain[-1,µ,ν] = σµν.

Note that the antisymmetrization does not extend to the chirality projector or γ5, e.g.

DiracChain[-6,µ,ν,ρ] =
PR

3!
(γµγνγρ −γµγργν −γνγµγρ + γνγργµ + γργµγν −γργνγµ) .

Weyl chains are quite similar in notation to the Dirac chains. The constituents of a WeylChain

always alternate between upper (σ ȦB = σ) and lower indices (σAḂ = σ̄). The arguments 6

and 7 hence fix the index positions for the entire chain.

WeylChain the product of sigma matrices.

The actual sigma matrix with which an argument is

contracted is not written out, e.g. k[1] stands for

σµk[1]
µ inside a WeylChain.

inside a WeylChain:

6 signifies that the following sigma matrix has upper

spinor indices

7 signifies that the following sigma matrix has lower

spinor indices

Spinor[p,m, s, d, e] a 2-spinor, with d = 1(2) undotted (dotted) and

e = 0(1) uncontracted (contracted) with ε =
(

0 1
−1 0

)

4.4 Ingredients of Feynman amplitudes 21

FormCalc also introduces some model-dependent symbols. It can be argued that this is not

a good practice, but the advantage of doing so is just too great to ignore as it can speed up

calculations by as much as 15%. This is because e.g. MW2 is an ordinary symbol while MW^2 is

a non-atomic expression (the internal representation is Power[MW,2]).

Setting $NoModelSpecific = True before loading FormCalc inhibits setting of the model-

dependent symbols. To change or add to these definitions, edit FormCalc/ModelSpecific.m.

Currently, the following model-dependent symbols are defined:

for the Standard Model:

Alfa, Alfa2 the fine-structure constantα = e2

4π and its square

Alfas, Alfas2 the “strong fine-structure constant”αs =
g2

s
4π and its

square (the spelling with an f was chosen so as not

to collide with the CERNlib function ALPHAS2)

CW2, SW2 cos2θW and sin2θW

MW2, MZ2, MH2

MLE2, ME2, MM2, ML2

MQU2, MU2, MC2, MT2

MQD2, MD2, MS2, MB2

the squares of various masses

SMSimplify[expr] Simplify with SW2 -> 1 - CW2 and CW2 -> MW2/MZ2

for the MSSM:

CA2, SA2, CB2, SB2, TB2 cos2α, sin2α, cos2 β, sin2 β, and tan2 β

CBA2, SBA2 cos2(β−α), sin2(β−α)

USfC, UChaC, VChaC, ZNeuC the complex conjugates of various mixing matrix

elements

MGl2, MSf2, MCha2, MNeu2

Mh02, MHH2, MA02

MG02, MHp2, MGp2

the squares of various masses

MSSMSimplify[expr] Simplify with SUSY trigonometric identities

(e.g. SBA2 -> 1 - CBA2)

SUSYTrigExpand[expr] express various trigonometric symbols

(SB2, S2B, etc.) through ca, sa, cb, sb

SUSYTrigReduce[expr] substitute back ca, sa, cb, sb

SUSYTrigSimplify[expr] perform trigonometric simplifications by applying

SUSYTrigExpand, Simplify, and SUSYTrigReduce in

sequence

22 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

Often one wants to neglect certain variables, typically masses. Directly defining, say, ME = 0

may lead to problems, however, for instance if ME appears in a negative power, or in loop

integrals where neglecting it may cause singularities. A better way is to assign values to

the function Neglect, e.g. Neglect[ME] = 0, which allows FormCalc to replace ME by zero

whenever this is safe. Watch out for the built-in definitions mentioned above: since e.g. ME^2

is automatically replaced by ME2, one has to assign Neglect[ME] = Neglect[ME2] = 0 in

order to have also the even powers of the electron mass neglected.

Neglect[s] = 0 replace s by 0 except when it appears in negative

powers or in loop integrals

To a certain extent it is also possible to use patterns in the argument of Neglect. Simple

patterns like _ and __ work always. Since FORM’s pattern matching is far inferior to Mathe-

matica’s, though, it is not at all difficult to come up with patterns which are not accepted by

FORM.

Determining the mass dimension is an easy way of checking consistency of an expression.

The function MassDim substitutes all symbols in the list MassDim0 by a random number, all

symbols in MassDim1 by Mass times a random number, and all symbols in MassDim2 by Mass2

times a random number. Symbols not in MassDim{0,1,2} are not replaced. The random

numbers are supposed to guard against accidental cancellations. An expression consistent

in the mass dimension should end up with just one term of the form (number) · Massn.

MassDim[expr] replace the MassDimn-symbols in expr by

(random number) · Massn

MassDim0 a list of symbols of mass dimension 0

MassDim1 a list of symbols of mass dimension 1

MassDim2 a list of symbols of mass dimension 2

Mass a symbol representing the mass dimension

4.5 Handling Abbreviations

CalcFeynAmp returns expressions where spinor chains, dot products of vectors, and Levi-

Civita tensors contracted with vectors have been collected and abbreviated. A term in such

an expression may look like

C0i[cc12,MW2, MW2, S, MW2, MZ2, MW2] *

(-4 AbbSum16 Alfa2 CW2 MW2 S/SW2 + 32 AbbSum28 Alfa2 CW2 S^2/SW2 +

4 AbbSum30 Alfa2 CW2 S^2/SW2 - 8 AbbSum7 Alfa2 CW2 S^2/SW2 +

Abb1 Alfa2 CW2 S (T - U)/SW2 + 8 AbbSum29 Alfa2 CW2 S (T - U)/SW2)

4.5 Handling Abbreviations 23

The first line stands for the tensor-coefficient function C12(M2
W, M2

W, s, M2
W, M2

Z, M2
W) which

is multiplied with a linear combination of abbreviations like Abb1 or AbbSum28 with certain

coefficients. The coefficients of the abbreviations contain kinematical variables, in this case

the Mandelstam variables S, T, and U, and parameters of the model, here e.g. Alfa2 or MW2.

This particular excerpt of code happens to be from a process without external fermions;

otherwise spinor chains, abbreviated as Fn, would appear, too.

The abbreviations like Abb1 or AbbSum29 can drastically reduce the size of an amplitude,

particularly so because they are nested in three levels. Consider AbbSum29 from the example

above, which is an abbreviation of about average length:

AbbSum29 = Abb2 + Abb22 + Abb23 + Abb3

Abb22 = Pair1 Pair3 Pair6

Pair3 = Pair[e[3],k[1]]

Without abbreviations, the result would for each AbbSum29 contain

Pair[e[1],e[2]] Pair[e[3],k[1]] Pair[e[4],k[1]] +

Pair[e[1],e[2]] Pair[e[3],k[2]] Pair[e[4],k[1]] +

Pair[e[1],e[2]] Pair[e[3],k[1]] Pair[e[4],k[2]] +

Pair[e[1],e[2]] Pair[e[3],k[2]] Pair[e[4],k[2]]

The size-reduction effect can be quantified by comparing the LeafCount of the expressions

in Mathematica. The leaf count is a measure for the size of an expression, more precisely it

counts the number of subexpressions or “leaves” on the expression tree. AbbSum29 has a leaf

count of 1 since it is just a plain symbol. In comparison, its fully expanded contents have a

leaf count of 77.

Abbr[] the list of abbreviations introduced so far

Abbr[patt] the list of all abbreviations including (or excluding,

if preceded by ! (Not)) the pattern patt

Unabbr[expr] substitute back all abbreviations and subexpressions

Unabbr[expr, patt] substitute back only those free of patt

Unabbr[expr, !f [, patt]] do not substitute inside objects matching f

OptimizeAbbr[a] optimize the abbreviations a

$OptPrefix the prefix for additional abbreviations introduced

by OptimizeAbbr

SubstAbbr[exprlist, patt] expand out abbreviations matching patt in exprlist

SubstSimpleAbbr[exprlist] expand out ‘simple’ abbreviations in exprlist

24 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

The definitions of the abbreviations can be retrieved by Abbr[] which returns a list of rules

such that

result //. Abbr[]

gives the full, unabbreviated expression. Needless to say, if one wants to use the results of

CalcFeynAmp outside of the present FormCalc session, the abbreviations have to be saved,

too, e.g. with

Abbr[] >> abbr

Abbr[patt] retrieves only the subset of abbreviations matching at least one of the pat-

terns patt. To exclude, rather than include, a pattern, precede it by ! (Not). For example,

Abbr[a,!b] returns all abbreviations with a but not b.

OptimizeAbbr[a]optimizes the list of abbreviations a. The optimization is done in two steps.

First, redundant parts are removed, e.g. the abbreviations

AbbSum637 -> Abb109 - Abb187

AbbSum504 -> Abb109 - Abb173 - Abb174 - Abb187

AbbSum566 -> Abb109 + Abb173 + Abb174 - Abb187

are replaced by

AbbSum637 -> Abb109 - Abb187

AbbSum504 -> AbbSum637 - Abb173 - Abb174

AbbSum566 -> AbbSum637 + Abb173 + Abb174

Then, in a second step, common subexpressions are eliminated, thereby simplifying the last

lines further to

AbbSum637 -> Abb109 - Abb187

Opt1 -> Abb173 + Abb174

AbbSum504 -> AbbSum637 - Opt1

AbbSum566 -> AbbSum637 + Opt1

Optimizing the abbreviations may take some time but can also speed up numerical com-

putations considerably. The prefix for the new abbreviations introduced by OptimizeAbbr,

i.e. the Opt in the OptN in the example above, can be chosen through the global variable

$OptPrefix.

SubstAbbr[exprlist, patt] expands out all abbreviations matching patt in exprlist; e.g. if the

abbreviation a -> b matches, the definition a -> b is removed and all a in exprlist are substi-

tuted by b, and the definition a -> b.

4.6 More Abbreviations 25

SubstSimpleAbbr[exprlist] expands out ‘simple’ abbreviations in exprlist. Abbreviations are

‘simple’ if they are of the form (number) or (number) · (symbol), or if the rhs’s LeafCount is

not larger than the lhs’s. Such expressions may show up in the abbreviation list e.g. after

further simplification.

4.6 More Abbreviations

The abbreviations above are introduced automatically by FormCalc, and for specific quanti-

ties only. There is also the possibility to abbreviate arbitrary expressions with the Abbreviate

command.

Abbreviate[expr, lev] introduce abbreviations for subexpressions of expr

starting at level lev

Abbreviate[expr, f] introduce abbreviations for subexpressions of expr

for which f returns True

AbbrevSet[rawexpr] set up the AbbrevDo function using rawexpr for

determining the summation indices

AbbrevDo[expr, i] introduce abbreviations for subexpressions of expr

where i is either a level or a function, as above

$AbbPrefix the prefix for abbreviations introduced by

Abbreviate

Abbreviate introduces abbreviations for subexpressions starting from a given depth of the

expression. Depending on this starting level, the expression will be more or less thoroughly

abbreviated. A starting level of 1 represents the extreme case where the result of Abbreviate

is just a single symbol. Currently, only sums are considered for abbreviations.

The alternate invocation, with a function as second argument, introduces abbreviations for

all subexpressions for which this function yields True, like Select. This is useful, for ex-

ample, to get a picture of the structure of an expression with respect to a certain object, as

in

Abbreviate[a + b + c + (d + e) x, FreeQ[#, x]&, MinLeafCount -> 0]

which gives Sub2 + Sub1 x, thus indicating that the original expression is linear in x.

The functionality of Abbreviate is actually separated into a pair of functions AbbrevSet and

AbbrevDo, i.e. Abbreviate internally runs AbbrevSet to define AbbrevDo and then executes

AbbrevDo. The expression given to AbbrevSet is not itself abbreviated but used for determin-

ing the summation indices; it could be e.g. a raw amplitude. This is particularly important

in cases where partial expressions will be given to AbbrevDo and where the summation in-

dices may not be correctly inferred because AbbrevDo does not see the full expression. The

26 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

definition of AbbrevDo is not automatically removed, so be careful not to execute AbbrevDo

with an expression that is not a subexpression of the one given to AbbrevSet!

The prefix of the abbreviations are given by the global variable $AbbPrefix.

option default value

MinLeafCount 10 the mininum leaf count above which a

subexpression becomes eligible for

abbreviationing

Deny {k, q1} symbols which must not occur in

abbreviations

Fuse True whether to fuse adjacent items for

which the selection function is True into

one abbreviation

Preprocess Identity a function applied to subexpressions

before abbreviationing

MinLeafCount determines the minimum leaf count a common subexpression must have in

order that a variable is introduced for it.

Deny specifies an exclusion list of symbols which must not occur in abbreviations.

Fuse specifies whether adjacent items for which the selection function returns True should

be fused into one abbreviation. It has no effect when Abbreviate is invoked with a depth.

For example,

Abbreviate[a Pair[1, 2] Pair[3, 4], MatchQ[#, _Pair]&,

Fuse -> False, MinLeafCount -> 0]

introduces two abbreviations, one for Pair[1, 2] and one for Pair[3, 4], whereas with

Fuse -> True only one abbreviation for the product is introduced.

Preprocess specifies a function to be applied to all subexpressions before introducing ab-

breviations for them.

The abbreviations introduced with Abbreviate are returned by Subexpr[]. This works sim-

ilar to Abbr[] and also the OptimizeAbbr function can be applied in the same way.

Subexpr[] the list of abbreviations introduced for

subexpressions so far

Subexpr[args] executes Abbreviate[args] locally, i.e. without

registering the subexpressions permanently, and

returns {list of subexpressions, abbreviated

expression}

4.7 Resuming Previous Sessions 27

Introducing abbreviations for subexpression has three advantages:

• The overall structure of the abbreviated expression becomes clearer.

• Duplicate subexpressions are computed only once.

• When writing out code for the abbreviations with WriteSquaredME, the abbreviations

are sorted into categories depending on their dependence on kinematical variables and

are thus computed only as often as necessary.

The combined effect of the latter two points can easily lead to a speed-up by a factor 3.

4.7 Resuming Previous Sessions

Loading a list of abbreviations from a previous FormCalc session does not by itself mean that

CalcFeynAmp or Abbreviate will use them in subsequent calculations. To this end they must

be registered with the system. There are two functions for this.

RegisterAbbr[abbr] register a list of abbreviations

RegisterSubexpr[subexpr] register a list of subexpressions

RegisterAbbr registers a list of abbreviations, e.g. the output of Abbr[] in a previous session,

such that future invocations of CalcFeynAmp will make use of them. Note that abbreviations

introduced for different processes are in general not compatible.

RegisterSubexpr registers a list of subexpressions, e.g. the output of Subexpr[] in a previ-

ous session, such that future invocations of Abbreviate will make use of them.

For long-running calculations, the Keep function is helpful to store intermediate expressions,

such that the calculation can be resumed after a crash. As a side effect, the intermediate

results can be inspected easily, even while a batch job is in progress.

Keep[expr, name, path] loads path/name.m if it exists, otherwise evaluates

expr and stores the result (together with the output

of Abbr[] and Subexpr[]) in that file. path is

optional and defaults to $KeepDir

Keep[expr, name] same as Keep[expr, name, $KeepDir]

Keep[lhs = rhs] same as lhs = Keep[rhs, "lhs"]

$KeepDir the default directory for storing intermediate

expressions

Keep has two basic arguments: a file (path and name) and an expression. If the file exists, it

is loaded. If not, the expression is evaluated and the results stored in the file, thus creating

28 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

a checkpoint. If the calculation crashes, it suffices to restart the very same program, which

will then load all parts of the calculation that have been completed and resume at the point

it left off.

The syntax of Keep is constructed so as to make adding it to existing programs is as painless

as possible. For example, a statement like

amps = CalcFeynAmp[...]

simply becomes

Keep[amps = CalcFeynAmp[...]]

Needless to say, this logic fails to work if symbols are being re-assigned, i.e. appear more

than once on the left-hand side, as in

Keep[amps = CalcFeynAmp[virt]]

Keep[amps = Join[amps, CalcFeynAmp[counter]]

Due to the first Keep statement, the second will always find the file keep/amps.m and never

execute the computation of the counter terms.

And there are other ways to confuse the system: mixing intermediate results from different

calculations, changing flags out of sync with the intermediate results, etc. In case of doubt,

i.e. if results seem suspicious, remove all intermediate files and re-do the calculation from

scratch.

4.8 Fermionic Matrix Elements

When FermionChains -> Chiral or VA is chosen, an amplitude involving external fermions

will contain DiracChains, abbreviated as Fi, e.g.

F1 -> DiracChain[Spinor[k[2],ME, -1], 6, Lor[1], Spinor[k[1],ME, 1]] *

DiracChain[Spinor[k[3],MT, 1], 6, Lor[1], Spinor[k[4],MT, -1]]

In physical observables such as the cross-section, where only the square of the amplitude

or interference terms can enter, these spinor chains can be evaluated without reference to a

concrete representation for the spinors. The point is that in terms like |M|2 or 2 Re(M∗
0M1)

only products (Fi Fj∗) of spinor chains appear and these can be calculated using the density

matrix for spinors

{uλ(p)ūλ(p), vλ(p)v̄λ(p)} =

1
2 (1 ± λγ5)/p for massless fermions†

1
2 (1 + λγ5/s)(/p ± m) for massive fermions

4.8 Fermionic Matrix Elements 29

where λ = ±1 and s is the helicity reference vector corresponding to the momentum p. s

is the unit vector in the direction of the spin axis in the particle’s rest frame, boosted into

the CMS. It is identical to the longitudinal polarization vector of a vector boson, and fulfills

s · p = 0 and s2 = −1.

In the unpolarized case the λ-dependent part adds up to zero, so the projectors become

∑
λ=±

uλ(p)ūλ(p) = /p + m , ∑
λ=±

vλ(p)v̄λ(p) = /p − m .

Technically, one can use the same formula as in the polarized case by putting λ = 0 and

multiplying the result by 2 for each external fermion.

FormCalc supplies the function HelicityME to calculate the helicity matrix elements (Fi Fj∗).

HelicityME[M0,M1] calculate the helicity matrix elements for all

combinations of Fn appearing in M∗
0M1

All (used as either argument of HelicityME:) instead of

selecting the Fs which appear in an expression,

simply take all Fs currently in the abbreviations

Mat[Fi, Fj] the helicity matrix element resulting from the

spinor chains in Fi and Fj

Hel[n] the helicity λn of the nth external particle

s[n] the helicity reference vector of the nth external

particle

To be sure, HelicityME does not calculate the full expression M∗
0M1, only the combinations

of Fs that appear in this product. These are called Mat[Fi,Fj] and depend on the helicities

and helicity reference vectors of the external particles, Hel[n] and s[n]. See Sect. 4.10 on

how to put together the complete expression M∗
0M1.

If possible, specific values for the Hel[n] should be fixed in advance, since that can dramat-

ically speed up the calculation and also lead to (much) more compact results. For example,

as mentioned before, unpolarized matrix elements can be obtained by putting the helicities

λn = 0 and multiplying by 2 for each external fermion. Therefore, for calculating only the

unpolarized amplitude, one could use

_Hel = 0;

mat = HelicityME[...]

†In the limit E ≫ m the vector s becomes increasingly parallel to p, i.e. s ∼ p/m, hence

/p(/p + m) = p2 + m/p = m(/p + m)

/p(/p − m) = p2 − m/p = −m(/p − m)

}
⇒ (1 + λγ5/s)(/p ± m)

E≫m−→
(

1 + λγ5
/p

m

)
(/p ± m) = (1 ± λγ5)/p .

30 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

which is generally much faster than HelicityME[...] /. Hel[_] -> 0. (Don’t forget that

the matrix elements obtained in this way have yet to be multiplied by 2 for each external

fermion.)

Note: HelicityME uses internal definitions set up by CalcFeynAmp. It is therefore not ad-

visable to mix the evaluation of different processes. For instance, wrong results can be

expected if one uses HelicityME on results from process A after having computed am-

plitudes from process B with CalcFeynAmp. Since this requires at least one invocation of

ClearProcess, though, it is unlikely to happen accidentally.

option default value

Dimension 4 the dimension to compute in

TreeSquare $TreeSquare

(default: True)

whether to include the matrix elements

for the computation of |M0|2

LoopSquare $LoopSquare

(default: False)

whether to include the matrix elements

for the computation of |M1|2

RetainFile False whether to retain the temporary FORM

command file

EditCode False whether to display the FORM code in

an editor before sending it to FORM

Dimension is used as in CalcFeynAmp. Only the value 0 has the effect of actually computing

in D dimensions, however, since for D and 4 the limit D → 4 has already been taken in

CalcFeynAmp. The dimensional dependence of the result is expressed through Dminus4 and

Dminus4Eps, where the latter represents the Dminus4 arising from the contraction of Levi-

Civita tensors. For testing and comparison, the default equivalence Dminus4Eps = Dminus4

can be unset.

The TreeSquare and LoopSquare options govern whether, in addition to M∗
0M1, also |M0|2

and/or |M1|2 will be needed. This allows to obtain all helicity matrix elements for e.g. the

computation of |M0|2 + 2 ReM∗
0M1 with a single invocation of HelicityME. The selections

are stored in the global variables $TreeSquare (True by default) and $LoopSquare (False by

default) and used as defaults in further invocations of HelicityME, ColourME, WeylME, and

WriteSquaredME.

The options RetainFile, and EditCode are used in the same way as for CalcFeynAmp, see

page 13.

The matrix element method can be applied to Weyl chains, too, which makes sense if one

wishes to apply correction factors to the matrix elements. To this end CalcFeynAmp must be

instructed to encode the Weyl fermion chains Fi as matrix elements Mat[Fi] (and sort the

4.9 Colour Matrix Elements 31

amplitude accordingly) with the option FermionOrder -> Mat. The corresponding bilinear

matrix elements Mat[Fi,Fj] needed to compute the squared amplitude are then computed

with WeylME.

WeylME[M0,M1] calculate the fermion matrix elements for all

combinations of Fn appearing inside Mat in M∗
0M1

All (used as either argument of WeylME:) instead of

selecting the Fs which appear in an expression,

simply take all Fs currently in the abbreviations

Since about the only purpose of Weyl matrix elements is to insert correction factors in front

of the Mat[Fi, Fj], there is an explicit option for this.

option default value

MatFactor (1 &) a function f which determines the

correction factor f[Fi, Fj] multiplied

with Mat[Fi, Fj]

TreeSquare $TreeSquare

(default: True)

whether to include the matrix elements

for the computation of |M0|2

LoopSquare $LoopSquare

(default: False)

whether to include the matrix elements

for the computation of |M1|2

4.9 Colour Matrix Elements

Diagrams involving quarks or gluons usually‡ contain objects from the SU(N) algebra. These

are simplified by CalcFeynAmpusing the Cvitanovic algorithm [Cv76] in an extended version

of the implementation in [Ve96]. The idea is to transform all SU(N) objects to products of

generators Ta
i j which are generically denoted by SUNT in FormCalc. In the output, only two

types of objects can appear:

• Chains (products) of generators with external colour indices; these are denoted by

SUNT[a, b, . . . , i, j] = (TaTb · · ·)ij where i and j are the external colour indices and

the a, b, . . . are the indices of external gluons. This notation includes also the identity

in colour space as the special case with no external gluons: δij = SUNT[i, j].

• Traces over products of generators; these are denoted by SUNT[a, b, . . . , 0, 0] =

Tr(TaTb · · ·).
‡Diagrams generated with the SM.mod model file contain no SU(N) objects since in the electroweak sector

colour can be taken care of by a trivial factor 3 for each quark loop.

32 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

The situation is much the same as with fermionic structures: just as an amplitude contains

open spinor chains if external fermions are involved, it also contains SUNTs if external quarks

or gluons are involved.

For the SUNT objects in the output, FormCalc introduces abbreviations of the type SUNn. These

abbreviations can easily be evaluated further if one computes the squared amplitude, be-

cause then the external lines close and the Cvitanovic algorithm yields a simple number for

each combination of SUNi and SUNj. (One can think of the squared amplitude being decom-

posed into parts, each of which is multiplied by a different colour factor.) But this is precisely

the idea of helicity matrix elements applied to the SU(N) case!

Because of this close analogy, the combinations of SUNi and SUNj are called colour matrix

elements in FormCalc and are written accordingly as Mat[SUNi,SUNj]. The function which

computes them is ColourME. It is invoked just like HelicityME.

ColourME[M0,M1] calculate the colour matrix elements for all

combinations of SUNn appearing in M∗
0M1

All (used as either argument of ColourME:) instead of

selecting the SUNs which appear in an expression,

simply take all SUNs currently in abbreviations

Mat[SUNi,SUNj] the colour matrix element resulting from the SU(N)

objects SUNi and SUNj

option default value

TreeSquare $TreeSquare

(default: True)

whether to include the matrix elements

for the computation of |M0|2

LoopSquare $LoopSquare

(default: False)

whether to include the matrix elements

for the computation of |M1|2

The core function behind ColourME can also be used directly to simplify colour structures.

ColourSimplify[expr] simplify colour objects in expr

ColourSimplify[tree, loop] simplifies the colour objects in (tree∗ loop)

Furthermore, FormCalc implements a special case of FeynArts’s DiagramGrouping function

in ColourGrouping, which groups Feynman diagrams according to their colour structures.

The correct grouping can only be done with fully simplified colour structures, which is why

this function is part of FormCalc, not FeynArts.

ColourGrouping[ins] group the inserted topologies (output of

InsertFields) according to their colour structures

4.10 Putting together the Squared Amplitude 33

4.10 Putting together the Squared Amplitude

Now that CalcFeynAmp has calculated the amplitudes and HelicityME and ColourME have

produced the helicity and colour matrix elements, the remaining step is to piece together the

squared matrix element |M|2, or more generally products like M∗
0M1.

This is non-trivial only if there are matrix elements of the form Mat[i, j] around, which have

to be put in the right places. Specifically, if M0 and M1 are written in the form

M0 = a11 F1 SUN1+ a21 F2 SUN1+ . . . = ∑
i j

ai j Fi SUN j and

M1 = b11 F1 SUN1+ b21 F2 SUN1+ . . . = ∑
i j

bi j Fi SUN j ,

their product becomes

M∗
0M1 = a∗11b11 Mat[F1,F1] Mat[SUN1,SUN1]+

a∗21b11 Mat[F1,F2] Mat[SUN1,SUN1]+ . . .

= ∑
i jkℓ

a∗ikb jℓ Mat[Fj, Fi] Mat[SUNℓ,SUNk] .

The coefficients aik and b jℓ are known as form factors. For efficiency, they are usually com-

puted separately in the numerical evaluation, so that the final expression for the squared

matrix element is easily summed up e.g. in Fortran as

do 1 i = 1, (# of Fs in M0)

do 1 j = 1, (# of Fs in M1)

do 1 k = 1, (# of SUNs in M0)

do 1 l = 1, (# of SUNs in M1)

result = result + Conjugate(a(i,k))*b(j,l)*MatF(j,i)*MatSUN(l,k)

1 continue

While this is arguably the most economic way to evaluate a squared amplitude numerically,

it is also possible to directly obtain the squared matrix element as a Mathematica expression.

The function which does this is SquaredME.

SquaredME[M0,M1] calculates M∗
0M1, taking care to put the Mat[i, j] in

the right places

SquaredME is called in much the same way as HelicityME. Because of the number of terms

that are generated, this function is most useful only for rather small amplitudes.

For clarity of output the result of SquaredME is given as two pieces: {expr, rul}, where expr

is the squared amplitude expressed in terms of form factors FF and FFC, and rul is a list of

rules which provide the values of the FF and FFC.

34 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

SquaredME does not insert the actual values for the Mat[i, j]. This can easily be done later by

applying the output of HelicityME, ColourME, or WeylME, which are lists of rules substituting

the Mat[i, j] by their values. That is to say, SquaredME and HelicityME/ColourME/WeylME

perform complementary tasks: the former builds up the squared amplitude in terms of the

Mat[i, j] whereas the latter calculate the Mat[i, j].

4.11 Polarization Sums

In the presence of external gauge bosons, the output of SquaredME will still contain polar-

ization vectors (in general implicitly, i.e. through the abbreviations). For unpolarized gauge

bosons, the latter can be eliminated by means of the identities

3

∑
λ=1

ε∗µ(k, λ)εν(k, λ) = −gµν +
kµkν
m2

for massive particles,

2

∑
λ=1

ε∗µ(k, λ)εν(k, λ) = −gµν −
η2kµkν
(η · k)2

+
ηµkν + ηνkµ

η · k
for massless particles.

In the massless case the polarization sum is gauge dependent and η is an external four-vector

which fulfills η · ε = 0 and η · k 6= 0. FormCalc makes the additional assumption η · η = 0

and also drops the η2 term above. For a gauge-invariant quantity, the η-dependence should

ultimately cancel.

FormCalc provides the function PolarizationSum to apply the above identities.

PolarizationSum[expr] sums expr over the polarizations of external gauge

bosons

It is assumed that expr is the squared amplitude into which the helicity matrix elements

have already been inserted. Alternately, expr may also be given as an amplitude directly, in

which case PolarizationSum will first invoke SquaredME and HelicityME (with _Hel = 0)

to obtain the squared amplitude. PolarizationSum cannot simplify Weyl chains, such as

CalcFeynAmp introduces with FermionChains -> Weyl (the default).

4.12 Analytic Unsquared Amplitudes 35

option default value

SumLegs All which external legs to include in the

polarization sum

Dimension 4 the dimension to compute in

GaugeTerms True whether to retain η-dependent terms

NoBracket (taken from

CalcFeynAmp)

symbols not to be included in the

bracketing in FORM

RetainFile False whether to retain the temporary FORM

command file

EditCode False whether to display the FORM code in

an editor before sending it to FORM

SumLegs allows to restrict the polarization sum to fewer than all external vector bosons. For

example, SumLegs-> {3,4} sums only vector bosons on legs 3 and 4.

Dimension is used as in CalcFeynAmp. Only the value 0 has the effect of actually computing

in D dimensions, however, since for D and 4 the limit D → 4 has already been taken in

CalcFeynAmp. The dimensional dependence of the result is expressed through Dminus4 and

Dminus4Eps, where the latter represents the Dminus4 arising from the contraction of Levi-

Civita tensors. For testing and comparison, the default equivalence Dminus4Eps = Dminus4

can be unset.

GaugeTerms retains terms containing the gauge-dependent auxiliary vector η. More pre-

cisely, the η-terms are actually introduced at first, to let potential cancellations of η’s in the

numerator against the denominator occur, but set to zero later.

The options MomElim, DotExpand, NoBracket, RetainFile, and EditCode are used in the

same way as for CalcFeynAmp, see page 13.

Note: PolarizationSum uses internal definitions set up by CalcFeynAmp. It is therefore not

advisable to mix the evaluation of different processes. For instance, wrong results can be

expected if one uses PolarizationSum on results from process A after having computed

amplitudes from process B with CalcFeynAmp. Since this requires at least one invocation of

ClearProcess, though, it is unlikely to happen accidentally.

4.12 Analytic Unsquared Amplitudes

The ‘smallest’ object appearing in the output of CalcFeynAmp is a four-vector, i.e. FormCalc

does not normally go into components. Those are usually inserted only in the numerical

part. This has advantages: for example, the analytical expression does not reflect a particular

phase-space parameterization.

36 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

One can also obtain an analytic expression in terms of kinematic invariants (but no four-

vectors) by squaring the amplitude and computing the polarization sums, as outlined above.

This has the advantage of being independent of the representation of the spinors and vectors,

but of course the size of the expression is significantly increased by squaring.

As a third alternative, one can obtain an analytical expression for the unsquared amplitude.

This requires to go into components, however.

To this end one has to load the extra package VecSet:

<< FormCalc‘tools‘VecSet‘

and for each external vector invoke the function VecSet, which has the same syntax as its

Fortran namesake, e.g.

VecSet[1, m1, p1, {0, 0, 1}]

VecSet[n,m, p, {ex,ey,ez}] set the momentum, polarization vectors, and

spinors for particle n with mass m and

three-momentum p̃ = p {ex, ey, ez}

The amplitude is then evaluated with the function ToComponents, e.g.

ToComponents[amp, "+-+-"]

This delivers an expression in terms of the phase-space parameters used in VecSet.

ToComponents[amp, "p1p2. . . pn"]

ToComponents[amp, {p1, p2,. . . , pn}]

evaluate amp by substituting four-vectors by their

component-wise representation using external

polarizations p1, . . . , pn

ToComponents[amp, pol] actually plugs the components of the four-vectors and spinors into

the amplitude amp. The external polarizations pol can be given either as a string with el-

ements +, -, 0 for right-handed, left-handed, and longitudinal polarization, or as a list of

integers +1, -1, 0.

4.13 Checking Ultraviolet Finiteness

One way of checking ultraviolet finiteness is to replace the one-loop integrals by their di-

vergent parts and see if the coefficient of the divergence adds up to zero. The function

4.13 Checking Ultraviolet Finiteness 37

UVDivergentPart takes the 1/(D − 4)-term of each one-loop integral. This means that non-

divergent integrals are set to zero.

UVDivergentPart[expr] replace all loop integrals in expr by their

UV-divergent part

UVSeries[expr] similar to UVDivergentPart, but perform a series

expansion in Dminus4

Divergence a symbol representing the dimensionally

regularized divergence ∆ = 2/(4 − D)

Dminus4 a symbol representing D − 4

To assert UV finiteness of an expression, one can check that the following expression is true:

uvcheck = UVDivergentPart[expr] //Simplify;

FreeQ[uvcheck, Divergence]

Note that models may have ‘hidden’ parameter relations, e.g. CW2 = MW2/MZ2 in the Stan-

dard Model, which need to be inserted in order to find analytical cancellation of divergences.

The UV-divergent integrals are

A0(m
2) = m2∆+O(1) , C00 =

∆

4
+O(1) ,

A00(m
2) =

m4

4
∆+O(1) , C00i = − ∆

12
+O(1) ,

B0 = ∆+O(1) , C00ii =
∆

24
+O(1) ,

B1 = −∆

2
+O(1) , C00i j =

∆

48
+O(1) ,

B00(p2, m2
1, m2

2) =

(
m2

1 + m2
2

4
− p2

12

)
∆+O(1) , D0000 =

∆

24
+O(1) ,

∂B00(p2, m2
1, m2

2)

∂p2
= − ∆

12
+O(1) , D0000i = − ∆

96
+O(1) ,

B11 =
∆

3
+O(1) ,

C0000(p2
1, p2

2, p2
3, m2

1, m2
2, m2

3) =

(
m2

1 + m2
2 + m2

3

24
− p2

1 + p2
2 + p2

3

96

)
∆+O(1) .

Alternatively, UV finiteness may be checked numerically by varying the parameters that

regularize the infinity in the loop integrals, µ and ∆, on which the final result must not

depend. This is of course limited to the achievable numerical precision.

38 4 ALGEBRAICALLY SIMPLIFYING DIAGRAMS

4.14 Useful Functions

DenCollect[expr] collects terms in expr whose denominators are

identical up to a numerical constant

DenCollect[expr,wrap] additionally applies wrap to the collected

numerators

TagCollect[expr, tag,wrap] apply wrap to the part of expr tagged by tag

TermCollect[expr] combines terms with common factors, i.e. does

ab + ac + d → a(b + c) + d

Pool[expr] same as TermCollect but different method

Pool[expr,wrap] additionally applies wrap to the b + c part

DotSimplify[f1, f2][expr] simplify expr with f1 if free of any NoBracket items,

else with f2

OnSize[n1,f1, n2,f2, . . . , fdef][expr]

returns f1[expr] if LeafCount[expr] < n1,

f2[expr] if LeafCount[expr] < n2, etc.,

and fdef[expr] if the expression is still larger

ExprHeads[expr] return all non-system symbols and heads in expr

ExprParts[expr,H, h] return all subexpressions of expr which must

contain the symbols and functions in H and may

contain those in h

Creep[f, patt . . .][expr] applies f to subexpressions of expr which contain

only the patterns in patt

MapOnly[f, h, patt . . .][expr] maps f onto subexpressions of head h in expr which

must contain each of patt and no other symbols

ApplyUnitarity[expr,U, d, s] simplify expr by exploiting the unitarity of the

d-dimensional matrix U. The optional argument s

specifies the simplification function to use internally

(default: FullSimplify)

ExpandSums[expr] turns all pieces of expr multiplied with SumOver into

an actual sum

SplitTerms[f, expr, n] applies f to expr, n terms at a time

DenCollect works essentially like Mathematica’s Collect, except that it takes the denomina-

tors appearing in the expression to collect for. Note that this refers to the ‘real’ denominators,

i.e. parts of the expression with negative powers, not to the symbol Den[p,m] which stands

4.14 Useful Functions 39

for propagator denominators (the latter can easily be collected with Collect).

TagCollect collects an expression with respect to powers of a tag and applies a function to

the term linear in the tag. This function is typically used to apply a function to the tagged

part of an expression, such as is possible with the MultiplyDiagrams function.

TermCollect and Pool combine terms with common factors. Unlike Factor, they look at the

terms pairwise and can thus do ab + ac + d → a(b + c) + d fast. Unlike Simplify, they do

not modify b and c.

DotSimplify simplifies an expression with two different functions depending on whether

it contains any of the objects listed in the NoBracket option (i.e. during the execution of

CalcFeynAmp or PolarizationSum).

The OnSize function is similar to the Switch statement, but for the size of the expression.

This can be useful when simplifying expressions because Simplify (even FullSimplify) is

fast and efficient on short expressions, but tends to be slow on large ones. For example,

OnSize[100, FullSimplify, 500, Simplify, TermCollect]

applies FullSimplify if the expression’s leaf count is less than 100, Simplify if it is between

100 and 500, and TermCollect above.

ExprHeads and ExprParts can be used to determine which parts of an expression are eligible

e.g. for simplification. ExprHeads returns all non-system symbols and heads of an expres-

sion, while ExprParts picks subexpressions in which only selected heads appear.

Creep and MapOnly have similar functionality: they deliver a ‘payload’ function to parts of

an expression containing certain objects only. Creep ‘creeps’ into an expression and applies

its function as soon as a subexpression contains only the given patterns. MapOnly is more

restrictive about the subexpression: For example, MapOnly[f, h, a|b, c][expr] applies f to

subexpressions of head h which must contain c and a or b, and may not contain symbols other

than a, b, c. Making c optional, MapOnly[f, h, a|b, _|c][expr] maps f onto subexpressions

which must contain a or b and must not contain variables other that a, b, c.

ApplyUnitarity exploits unitarity of a given matrix to simplify an expression. The two

unitarity relations UU† = 1l (or ∑
d
j=1 Ui jU

∗
k j = δik) and U†U = 1l (or ∑

d
j=1 U jkU∗

ji = δik)

are used to substitute sums of UU∗ elements with more than ⌈d/2⌉ terms. For example,

ApplyUnitarity[expr, CKM, 3] might replace CKM12CKM
∗
13 + CKM22CKM

∗
23 by −CKM32CKM

∗
33.

ExpandSums turns expressions where index summations are denoted by SumOver[i, r] mul-

tiplied with the term to be summed over, such as appear e.g. in the output of CalcFeynAmp,

into ordinary Mathematica sums. ExpandSums[expr, h] uses head h instead of Plus.

SplitTerms applies a function to a sum in batches, with at most the prescribed number of

terms in each invocation. For all other heads the function is applied to the whole expression.

40 5 TOOLS FOR THE NUMERICAL EVALUATION

5 Tools for the Numerical Evaluation

The numerical evaluation has to take care of two important issues, and therefore resolves

into two conceptual steps:

1. Almost invariably, the numerical evaluation in Mathematica itself is too slow. Even

though the speed of numerical computations has been improved greatly in Mathemat-

ica 4, the sheer amount of number crunching e.g. in a scan over parameter space places

the numerical evaluation safely in the domain of a compiled language. This makes

it necessary to translate the Mathematica expressions resulting from CalcFeynAmp,

HelicityME, etc. into a high-level language program.

For FormCalc, Fortran has been chosen because of its proven track record for fast and

reliable number crunching, the availability of good compilers on all platforms, and the

possibility to link with existing code. Code generation in C99 is available, too.

This first step of writing out a subroutine from the calculated amplitudes can be im-

plemented in a reasonably general way and is handled by FormCalc itself, see Sect.

5.1.

2. What FormCalc generates is just the subroutine for computing the squared matrix el-

ement. Of course, this subroutine has to be provided with the proper kinematics, the

model parameters have to be initialized, etc. In other words, a driver program is re-

quired to invoke the generated subroutine. Unfortunately, it is not really possible to

write one single fully automated driver program that fits each and every purpose, or

rather, such a program would be difficult to use beyond its designed scope.

The driver programs that come with FormCalc together are a powerful tool for comput-

ing cross-sections, but moreover they have expressly been written to give an example

of how the generated code can be used. Extending or modifying this code for a related

purpose should be fairly straightforward.

The following files in the FormCalc distribution are used for the numerical evaluation:

drivers/ driver programs for running the generated code:

process.h the process specification

run.F the parameters for a particular “run”

partonic.h the partonic composition of the final result

extra.h extra user definitions

distrib.h definitions for distributed computing

makefile.in the makefile minus the flags set by configure

configure a script to find out library locations and compiler flags

do a script to automate computations

41

drivers/F/ Fortran driver programs for running the generated code:

main.F the main program (command-line processing)

xsection.F,.h the code for computing the cross-section

parton.h setup for a single partonic process

num.h definitions for the OPP numerator functions

lumi_*.F luminosity computation

MtoN.F,.h the kinematics for a M → N process

softphoton.F the integrals for the soft-photon approximation

util.h definitions for the functions in util.a

const.h general constants and regularization parameters

inline.h inline versions of the util functions

contains.h inline versions of the util functions

user.h user definitions, e.g. choice of model, OPP, etc.

decl.h combined declarations file, included ‘everywhere’

drivers/C/ C driver programs for running the generated code:

num.h definitions for the OPP numerator functions

model_*.h declarations of the model parameters

util.h definitions for the functions in util.a

const.h general constants and regularization parameters

inline.h inline versions of the util functions

contains.h inline versions of the util functions

user.h user definitions, e.g. choice of model, OPP, etc.

decl.h combined declarations file, included ‘everywhere’

drivers/models/ code for model initialization:

model_*.F,.h initialization of the stock models

drivers/tools/ helper scripts:

mktm a script to set up Mathematica interfacing code (internal use)

data a script for extracting the actual data out of the log files

pnuglot a script for plotting data files using gnuplot

sfx a script for making a self-extracting archive

turnoff a script to turn on or off the evaluation of code modules

submit a script to submit parallel jobs

tools/ tools for the numerical evaluation:

ReadData.tm a program for reading data files into Mathematica

reorder.c a utility to reorganize parameters in data files

ScanGraphics.m special Mathematica graphics functions for parameter scans

bfunc.m the explicit expressions for the one- and two-point functions

btensor.m the explicit tensor reduction for the one- and two-point

42 5 TOOLS FOR THE NUMERICAL EVALUATION

functions in Mathematica

5.1 Generating code

In most cases, the numerical evaluation of an amplitude directly in Mathematica is too slow,

so the FormCalc results need to be converted to a Fortran or C program. The simplest way to

do this in Mathematica is something like FortranForm[result] >> file.f. Unfortunately,

this leaves a lot to be done manually.

FormCalc contains two much more sophisticated functions for generating code,

WriteSquaredME and WriteRenConst. The philosophy is that the user should not have to

modify the generated code. This eliminates the source of many errors, but of course goes

well beyond simple translation to code: the code has to be encapsulated (i.e. no loose ends

the user has to bother with), and all necessary subsidiary files, such as include files and a

makefile, have to be produced. Also, the code has to be chopped into pieces small enough

that the compiler will accept them.

Before using WriteSquaredME or WriteRenConst, a directory must be created for the code

and the driver programs copied into this directory. This is done with SetupCodeDir:

SetupCodeDir[dir] create a directory dir and install the driver programs

necessary to compile the generated code in this

directory

Note that SetupCodeDir never removes or overwrites the directory or the driver programs,

so a code directory, once created, stays put. The Drivers option can be used to load cus-

tomized driver programs from a local directory.

Option default value

Model $Model the model used for the calculation, the

presently initialized one by default

Folder models the subdirectory of the generated

directory into which the model

initialization code is written

FileHeader FileHeader the header for generated code files,

same as for WriteSquaredME by default

Drivers "drivers" a directory containing customized

versions of the driver programs which

take precedence over the default ones in

$DriversDir

5.1 Generating code 43

To illustrate the concept, consider generating code for a particular scattering process. The

first time, no customized drivers exist and hence FormCalc copies the default drivers into the

code directory. The user then modifies, say, run.F. To preserve the changes, he copies the file

to a local directory, e.g. drivers, and specifies this directory with the Drivers option. Now

even if the code directory is deleted, generating the code anew will recover all modifications

because the customized version of process.h in drivers supersedes the default run.F in

$DriversDir.

SetupCodeDir also sets up the model initialization, which consists of three files:

• models/model.F, which contains the initialization routines of Sect. 5.1.3,

• models/model.Fh, model declarations for Fortran code,

• models/model.ch, model declarations for C code.

For FeynArts’s stock models the generated initialization merely uses/combines the ready-

made files in drivers/models.

Models created with the FeynArts interface of FeynRules [Al09, Al14] come with a model.pars

file containing numerical values for model parameters, and also the model file model.mod

itself uses shorthands in coupling expressions, defined in the variable FA$Couplings.

Important: the numbers listed in the .pars file are usually tree-level values and may need to

be adapted depending on the renormalization scheme, which is in the sole responsibility of

the user.

The generation of initialization code is silently skipped if neither stock initialization files nor

a .pars file is found on the $ModelPath.

The function WriteSquaredME assumes that there is a tree-level amplitude Mtree and a one-

loop amplitude M1-loop and writes out a subroutine called SquaredME which computes the

two expressions |Mtree|2 and 2 ReM∗
treeM1-loop. When there is no tree-level contribution, 0

and |M1-loop|2 are returned, and when there is no one-loop contribution, |Mtree|2 and 0 are

returned.

WriteSquaredME[tree, loop,mat, abbr, . . . , dir]

generate code for a subroutine SquaredME in the

directory dir; this subroutine computes the squared

matrix element composed of the amplitudes tree (for

the tree-level part) and loop (for the one-loop part)

The tree and loop arguments are results of CalcFeynAmp and are trailed by all other objects

necessary for the computation of the squared matrix element, like helicity matrix elements,

colour matrix elements, and the abbreviations. An empty list, {}, is used to indicate that the

44 5 TOOLS FOR THE NUMERICAL EVALUATION

tree or loop argument is missing. Since WriteSquaredME has a rather complicated invocation,

it is perhaps best to give an example:

born = CalcFeynAmp[bornamps];

self = CalcFeynAmp[selfamps];

vert = CalcFeynAmp[vertamps];

box = CalcFeynAmp[boxamps];

col = ColourME[All, born];

dir = SetupCodeDir["fortran"];

WriteSquaredME[born, {self, vert, box}, col, Abbr[], dir]

The tree and loop arguments of WriteSquaredME have the somewhat unorthodox feature that

the naming of the code modules depends on the variable names chosen for the components

of the amplitude (like born, self, etc., in the example above). That is, WriteSquaredME tries

to name the code modules like the variables, e.g. the amplitude contained in the variable

self will be written to files of the form self*.F. This is only possible if the variable names

are plain symbols; in all other cases, the modules are named Tree1.F, Tree2.F, or Loop1.F,

Loop2.F, etc.

The following options can be used with WriteSquaredME.

5.1 Generating code 45

option default value

ExtraRules {} extra rules to be applied to the

expressions before the loop integrals are

abbreviated

TreeSquare $TreeSquare

(default: True)

whether the square of the tree-level

amplitude is added to the result

LoopSquare $LoopSquare

(default: False)

whether the square of the one-loop

amplitude is added to the result

Folder "squaredme" the subdirectory of the code directory

into which the generated code is written

FilePrefix "" a string prepended to the filenames of

the generated code

SymbolPrefix "" a string prepended to global symbols to

prevent collision of names when more

than one process is linked

FileHeader "#if 0\n\ the file header

* %f\n\

* %d\n\

* generated by FormCalc m.n %t\n\

#endif\n\n"

SubroutineIncludes FileIncludes per-subroutine #include statements

FileIncludes per-file #include statements

{"#include \"decl.h\",

"#include \"inline.h\"\n",

"#include \"contains.h\"\n"}

ExtraRules specifies additional transformation rules that are applied to the modules of the

amplitude before the loop integrals are abbreviated.

TreeSquaredetermines whether the square of the tree-level amplitude is added to the result.

This is the case unless one needs to compute only the interference term, usually for testing.

LoopSquare determines whether the square of the one-loop amplitude is added to the

one-loop result, i.e. whether the SquaredME subroutine shall compute 2 Re M∗
treeM1-loop +

|M1-loop|2 rather than only 2 ReM∗
treeM1-loop. Without the |M1-loop|2 term (which com-

pletes the square |Mtree +M1-loop|2), the one-loop result may become negative if Mtree is

very small. The contribution of the same order from the two-loop result, 2 Re M∗
treeM2-loop,

is much smaller than |M1-loop|2 in this case so that there is no inconsistency with the order

in perturbation theory.

46 5 TOOLS FOR THE NUMERICAL EVALUATION

Folder specifies the name of the subdirectory relative to the code directory into which the

generated code is written. When using this option, the default makefile will usually have to

be adapted accordingly.

FilePrefix specifies a string which will be prepended to the names of all generated files.

This complements the Folder option as another way of making files unique.

SymbolPrefix is a way of avoiding symbol collisions when more than one process generated

by WriteSquaredME is linked together. The given string must be acceptable to Fortran or C

as it is prepended to all global symbols like the names of subroutines and common blocks.

FileHeader specifies a string to be used as file header. This string may contain %f, %d, and %t,

which are substituted at file creation by file name, description, and time stamp, respectively.

SubroutineIncludes gives declarations to be inserted in the declaration section of each sub-

routine, usually in the form of #include statements. In the most general form a list of three

strings is given, the first of which included before, the second after local variable declara-

tions, and the third at the end of the routine. It is admissible to provide a list with fewer

strings, or just a string (without a list), in which case the unspecified ones remain empty.

FileIncludes gives declarations to be inserted at the beginning of each generated file. It

accepts the same input as SubroutineInclude except that there is no subroutine relative

to which the placement can be made. Instead, the first list element goes into the central

include file vars.h, the other two into the individual code files, after the #include "vars.h"

statement.

SetLanguage["Fortran"] set the output language to Fortran (default)

SetLanguage["C"] set the output language to C99

SetLanguage[lang, "novec"] generate unvectorized code

5.1.1 Libraries and Makefiles

The code is organized in FormCalc into a main code directory, which contains the main pro-

gram and all its prerequisite files, and subsidiary ‘folders’ (subdirectories to the main code

directory). The default setup looks like this:

5.1 Generating code 47

main code directory
(created by SetupCodeDir)

squaredme/
squaredme.a

(generated by WriteSquaredME)

renconst/
renconst.a

(generated by WriteRenConst)

util/
util.a

F/

C/
tools/

(come with FormCalc)

Folders equipped with an own makefile produce a library of the same name, e.g. the make-

file in util/ makes the library util.a. These sub-makefiles are orchestrated by the master

makefile. Libraries required for the main program are listed in the LIBS variable and built

automatically by invoking the sub-makefiles:

LIBS = squaredme.a renconst.a util.a

Note that configure overwrites makefile, hence ‘permanent’ changes should be made in

makefile.in since configure overwrites makefile.

The util library is a collection of ancillary routines which currently includes:

• System utilities (log file management),

• Kinematic functions (Pair, Eps, . . .),

• Diagonalization routines (DIAG library [Ha06]),

• Univariate integrators (Gauss, Patterson),

• Multivariate integrators (CUBA library [Ha04]).

The util.a library is compiled once when FormCalc is installed and then copied to the main

code directory, thus avoiding unnecessary compiles.

5.1.2 Partonic Composition

Partonic processes can be combined in the final result. The number of incoming and outgo-

ing legs must be the same, so that the phase-spaces have identical dimension for integration,

but otherwise each partonic process may have distinct kinematics. It is up to the user to

ensure that the combined result makes sense physically.

Technically one invokes WriteSquaredME for each partonic process, but with different values

for the Folder and SymbolPrefix option. The Folder option chooses different output direc-

tories and the SymbolPrefix option disambiguates globally visible symbols in the generated

48 5 TOOLS FOR THE NUMERICAL EVALUATION

code. Both options admit the use of ProcName, as in: Folder -> {"squaredme", ProcName}

which will be substituted by the process name, suitably arranged as file and symbol name.

The above folder name might be expanded as squaredme/Fb21F21Fb33iF33i.

The actual composition of the final result is determined through the partonic.h header in

the drivers directory. The default setup, for an only partonic process, is

#define NPID 1

*** BEGIN PARTONIC PROCESS #1

#define PID 1

#define PARTON1 -1

#define PARTON2 -1

#include "squaredme/specs.h"

#include "parton.h"

*** END PARTONIC PROCESS #1

For more than one partonic process, NPID has to be increased appropriately and the lines

between BEGIN and END PARTONIC PROCESS have to be replicated for each partonic process,

with the following quantities adapted:

• PID is the running number of the partonic process, counting from 1 to NPID (though

not necessarily in ascending order),

• PARTON1 and PARTON2 identify the incoming partons in lumi_hadron.F by their PDG

code: 0 = gluon, 1 = down, 2 = up, 3 = strange, 4 = charm, 5 = bottom, 6 = top.

• The specs.hfile from the correct directory (cf. Folder option above) has to be included.

• The parton.h stays put, i.e. is the same for each partonic process.

5.1.3 Specifying model parameters

Numerical model parameters are specified in the model initialization file. The initialization

file must implement three subroutines:

subroutine ModelDefaults

sets all model parameters to their initial values. This subroutine is invoked before the user

gets to set the input parameters.

5.1 Generating code 49

subroutine ModelConstIni(fail)

integer fail

initializes the constant model parameters, i.e. the ones that do not depend on
√

s, the center-

of-mass energy. If the routine determines that the input parameters yield unphysical or

otherwise unacceptable model parameters, it must return a non-zero value in fail.

subroutine ModelVarIni(fail, sqrtS)

integer fail

double precision sqrtS

is called after ModelConstIni to initialize the model parameters that depend on
√

s, typically

αs and derived quantities. Finally, the

subroutine ModelDigest

is invoked to print a digest of the model parameters.

Note one detail: some model constants are declared in model_x.h with parameter state-

ments, i.e. as numerical constants. WriteSquaredME can optimize the generated code based

on the information which symbols are numerical constants to the compiler and which are

variables.

The trick is to move the numerical constants to the front of each product so that the compiler

can combine these constants into one number, thus reducing the number of multiplications

at run time. For example, if WriteSquaredME knows Alfa2 and SW2 to be numerical con-

stants, it will write (3*Alfa2)/(8.D0*SW2**2)*(Abb1*AaA0i44*MH2) instead of Mathemat-

ica’s default ordering (3*Abb1*Alfa2*AaA0i44*MH2)/(8.D0*SW2**2). While this may seem

a minor rearrangement, the increase in execution speed can be 30%!

To tell WriteSquaredME which symbols are numerical constants to the compiler, simply as-

sign the symbol a numerical value like in (this statement is near the end of FormCalc.m)

Scan[(N[#] = Random[])&, {Alfa, Alfa2, MW, MW2, ...}]

Details of the code generation

The following excerpt is from a Fortran code generated by WriteSquaredME:

subroutine vert

implicit none

#include "vars.h"

50 5 TOOLS FOR THE NUMERICAL EVALUATION

#include "inline.h"

Cloop(HelInd(1)) = Cloop(HelInd(1)) +

& 1/(4.D0*CW2**3*SW2**2)*

& ((8*MW2*(Pair1*Pair2*Sub437) - Alfa2*CW2**3*Sub445)/

& (MH2 - S) + (8*MW2*(Pair3*Pair4*Sub437) -

& Alfa2*CW2**3*Sub453)/(MH2 - T) +

& (8*MW2*(Pair5*Pair6*Sub437) - Alfa2*CW2**3*Sub461)/

& (MH2 - U))

#include "contains.h"

end

Note the use of the C preprocessor in statements like #include. Because of this, the code

files have the extension .F which is recognized by almost all Fortran compilers.

WriteSquaredME pulls the calculation of several kinds of objects out of the actual computa-

tion of the amplitude. That is, these objects are calculated first and stored in variables, and

then the amplitude is computed. Because the replacement of more complex objects by scalar

variables shortens the expressions, these objects are referred to as abbreviations.

The following objects are treated as abbreviations:

1. variables replacing some function call: Pairn (dot products), Epsn (contracted epsilon

tensors), Fn (fermion chains), AaX0in (loop integrals),

2. products or sums of variables of type 1: Abbn, AbbSumn,

3. matrix elements: MatType(i, j).

All of these abbreviations except the AaX0in are in fact the ones already introduced by Form-

Calc. These abbreviations share the general feature of being costly in CPU time (in particular

the loop integrals), which means that for optimal performance they should be calculated as

few times as possible. WriteSquaredME splits them into 2 × 3 categories:

• abbr0_cat.F – tree-level, and

• abbr1_cat.F – one-loop,

• abbri_s.F – abbreviations which depend only on
√

s,

• abbri_angle.F – abbreviations which depend also on other phase-space variables, but

not on the helicities, nad

5.1 Generating code 51

• abbri_hel.F – helicity-dependent abbreviations.

Needless to say, each of these abbri_cat modules is invoked only when necessary.

All modules generated by WriteSquaredME are invoked in the proper fashion by the master

subroutine SquaredME, as shown in the following figure.

.TRUE.

.FALSE.

reset

subroutine SquaredME(result, helicities, flags)

loop over helicities

call abbr_s

call abbr_angle

call abbr_hel

calculate form factors ci

call born, self, vert. . .

sum up sq. matrix element

result = ∑
ij

ci c∗j Mat(i,j)

end

As long as one sticks to the default driver programs, one does not have to worry about

actually calling SquaredME. For certain applications (e.g. Monte Carlo generators) it might

nevertheless be attractive to invoke SquaredME directly. Its declaration is

subroutine SquaredME(result, helicities, flags)

double precision result(2)

integer*8 helicities

integer flags

The results are returned in result, helicities encodes the helicities to include, and flags

is an integer specifying flags for the computation.

52 5 TOOLS FOR THE NUMERICAL EVALUATION

The results of SquaredME are result(1) = |Mtree|2 and result(2) = 2 ReM∗
treeM1-loop, ex-

cept when there is no tree-level contribution, in which case result(1) = 0 and result(2) =

|M1-loop|2 is returned.

The helicities are encoded bitwise in the integer argument helicities. For each external

particle, five bits represent, from most to least significant bit, right-circular (spin 2 or 3/2),

right-circular (spin 1 or 1/2), longitudinal, left-circular (spin 1 or 1/2) and left-circular (spin

2 or 3/2) polarization:

� y ↔ x 	 � y ↔ x 	

helicities b5n−1 b5n−2 b5n−3 b5n−4 b5n−5 . . . b4 b3 b2 b1 b0

︸ ︷︷ ︸
Particle 1

︸ ︷︷ ︸
Particle n

For instance, a left- and right-circularly polarized fermion scattering into an unpolarized

two-vector-boson final state would be given by helicities = 00010 01000 01110 011102 =

7419010 . Some compilers allow binary notation directly as B’000100100001110 01110’ (this

is non-portable, however).

Currently three flags are passed:

• Bit 0 is the ‘set mass’ flag: if 1, the masses of the external particles are returned in the

‘result’ argument. No cross-section is computed in this case.

• Bit 1 is the ‘reset’ flag: if 1, the abbreviations must be re-calculated completely. The lat-

ter is the case when the center-of-mass energy or the model parameters have changed.

• Bit 2 is the ‘loop’ flag: if 1, the loop corrections are computed. This flag allows e.g. to

integrate phase space separately for tree-level and one-loop part.

The following picture shows the default constellation of driver programs and code modules

generated by WriteSquaredME:

5.2 Running the Generated Code 53

user-level code included in FormCalc

generated code (“black box”)

cross-sections, decay rates, asymmetries. . .

SquaredME.F

master subroutine

abbr0_s.F

abbr0_angle.F

...

abbreviations
(calculated only when necessary)

born.F

self.F

...

form factors

run.F

parameters for this run

xsection.F, MtoN.F

driver programs

process.h

process definition

5.2 Running the Generated Code

The code produced by WriteSquaredMEneeds in addition a driver program which supplies it

with the necessary parameters, kinematics, etc. The default driver program that comes with

FormCalc is organized in a very modular way and spreads out over several files: Technically,

the main file is run.F, i.e. this is the file the compiler sees as main program. However, run.F

is just a clever way of defining parameters at the right places, and the real work is done in

other files which are included by run.F.

There is almost no cross-talk between different modules which are in that sense ‘universal.’

The actual main program, main.F, only scans the command line and invokes

call ProcessIni(...)

call ParameterScan(...)

All further action is decoupled from the main program and can easily be called from any

application. It is thus relatively straightforward to use FormCalc-generated code in own

programs.

The distribution of the code over the various include files and their interdependencies is

shown in the following figure, where arrows indicate code inclusion via #include.

54 5 TOOLS FOR THE NUMERICAL EVALUATION

main.F

xsection.F

process.h

MtoN.F

xsection.h

partonic.h parton.h

model_x.F

user.h

util.h

looptools.h

renconst.h

MtoN.h

lumi_y.F

model_x.h

lumi_y.h

files in red boxes

must be adapted

to each process

run.F

decl.h

Organizing the code in this seemingly entangled, but highly modular way makes it possible

for one program to perform many different tasks simply by setting preprocessor flags. The

different modules have the following duties:

• run.F defines a “run,” e.g. the ranges over which to scan model parameters,

• process.h defines all process-dependent parameters,

• main.F does the command-line parsing,

• xsection.F contains the kinematics-independent code,

xsection.h contains the declarations for xsection.F,

• partonic.h determines the partonic composition of the result,

parton.h contains the code for a single partonic process,

• MtoN.F contains the kinematics-dependent code for a M → N process,

MtoN.h contains the declarations for MtoN.F,

• model_x.F (currently one of model_sm.F, model_mssm.F, model_thdm.F) initializes the

model parameters,

model_x.h contains the declarations for model_x.F,

• lumi_y.F (currently one of lumi_parton.F, lumi_hadron.F, lumi_photon.F) calcu-

lates the parton luminosity,

lumi_y.h contains the declarations for lumi_y.F,

• util.h contains the declarations for the functions in the util library,

• looptools.h is the LoopTools include file,

5.2 Running the Generated Code 55

• renconst.h declares the renormalization constants (see Sect. 5.4).

In this setup, the choice of parameters is directed by the two files process.h and run.F,

which include one each of

• Kinematics definitions:

1to2.F,

2to2.F,

2to3.F,

• Convolution with PDFs:

lumi_parton.F,

lumi_hadron.F,

lumi_photon.F,

• Model initialization:

model_sm.F,

model_mssm.F,

model_thdm.F.

5.2.1 Process definition

All process-specific definitions are given in process.h. The external particles are declared

in the lines

#define TYPEi ti

#define MASSi mi

#define CHARGEi ci

where each ti is one of the symbols SCALAR, FERMION, VECTOR, PHOTON, or GLUON. PHOTON is

the same as VECTOR except that longitudinal polarization states are not allowed and GLUON is

just an alias for PHOTON.

As in FormCalc, the momenta, masses, and polarization vectors are numbered sequentially

like in the following figure.

k1, m1, ε1

k2, m2, ε2

k3, m3, ε3

k4, m4, ε4
...

In addition to the external particles, the following items are defined in process.h:

56 5 TOOLS FOR THE NUMERICAL EVALUATION

• a colour factor (COLOURFACTOR), to account for coloured particles in the initial state,

• a combinatorial factor (IDENTICALFACTOR), to account for identical particles in the final

state,

• a wave-function renormalization (WF_RENORMALIZATION), if a non-onshell renormaliza-

tion scheme is used,

• whether bremsstrahlung shall be added (PHOTONRADIATION), and the maximum energy

a soft photon may have (ESOFTMAX) (see Sect. 5.5 for details).

5.2.2 Building up phase space

FormCalc builds up the n-particle phase space iteratively by nested integrations over the

invariant mass Mi and solid angle Ωi of each outgoing particle i. This procedure is encoded

in the subroutine Split:

call Split

√

s
m1Ω1

M1

m2

Ω2

M2
. . .

mn−1

Ωn−1

Ωn

mn

Counting the degrees of freedom, there are (n − 1) M-integrations and n Ω-integrations.

The corresponding phase-space parameterization is

1

2
√

s

∫ √
s−m1

m2+···+mn

dM1 dΩ1
k1

2

×
∫ M1−m2

m3+···+mn

dM2 dΩ2
k2

2

× · · ·

×
∫ Mn−2−mn−1

mn

dMn−1 dΩn−1
kn−1

2

×
∫

dΩn
kn

2

where dΩi = d cosθi dϕi. The particle’s momentum ki and cosθi are given in the respective

decay’s rest frame. The ϕ1-integration is trivial because of axial symmetry. From the prac-

tical point of view this looks as follows (this code is taken almost verbatim from FormCalc’s

2to3.F):

5.2 Running the Generated Code 57

p = 0

ex = 0

ey = 0

ez = 1

minv = sqrtS

msum = mass(3) + mass(4) + mass(5)

call Split(5, mass(5),

& p, ex,ey,ez, minv, msum, fac, 0,

& Var(XMREM5), Var(XCOSTH5), Var(TRIVIAL))

call Split(4, mass(4),

& p, ex,ey,ez, minv, msum, fac, 0,

& Var(FIXED), Var(XCOSTH4), Var(XPHI4))

call VecSet(3, mass(3), p, ex,ey,ez)

One starts with the initial reference direction in (ex, ey, ez) and no boost, p = 0. The avail-

able energy is given in minv and the sum of external masses in msum. The Split subroutine is

then called (n− 1) times for an n-particle final state. The reference direction, the boost, minv,

and msum are automatically adjusted along the way for the respective remaining subsystem

and ultimately determine the remaining n-th vector unambigously, which is then simply set

by VecSet.

About the integration variables more will be said in the next section. For the moment, note

that the X in XMREM5 refers to the ratio, i.e. XMREM5 runs from 0 to 1. The actual integration

borders are determined internally by Split.

After invoking Split or VecSet for external particle i, several kinematical quantities are

available:

• momspec(SPEC_M,i) — mass mi,

• momspec(SPEC_E,i) — energy Ei,

• momspec(SPEC_K,i) — momentum |~ki|,

• momspec(SPEC_ET,i) — transverse energy ET
i ,

• momspec(SPEC_KT,i) — transverse momentum |~kT
i |,

• momspec(SPEC_RAP,i) — rapidity yi,

• momspec(SPEC_PRAP,i) — pseudo-rapidity ηi,

58 5 TOOLS FOR THE NUMERICAL EVALUATION

• momspec(SPEC_DELTAK,i) — the difference Ei − ki,

• momspec(SPEC_PHI,i) — aximuthal angle ϕi,

• momspec(SPEC_EX,i), momspec(SPEC_EY,i), momspec(SPEC_EZ,i)

— direction of motion~ei.

5.2.3 Variables

The kinematic input variables are organized in a homogeneous system. Each variable is

referred to by a preprocessor constant, e.g. SQRTS or XCOSTH (variables starting with X are

generally scaled, i.e. run from 0 to 1). The following parts can be accessed via preprocessor

macros:

• Var(i) = the actual value of i.

• Show(i) = the value printed in the output – to print e.g. t instead of cosθ.

• Lower(i), Upper(i), Step(i) = the lower limit, upper limit, and step width of i.

If the step is zero, the cross-section is integrated over i.

If the step is −999, the variable is considered ‘spurious’, i.e. used for output only, not

integrated over or stepped through.

• CutMin(i), CutMax(i) = the lower and upper cuts on i.

There are two special variables: FIXED for fixed values, i.e. no integration, and TRIVIAL for

trivial integrations.

5.2.4 Cuts

There are two principal ways to apply cuts in FormCalc. The first is by actually restricting

the integration limits. The second is by selectively setting the integrand (differential cross-

section) to zero whenever the cut condition(s) are met.

Restricting integration limits The subroutine Split allows to restrict the integration re-

gion of the M- and cosθ-integration. Theϕ-integration is not modified in the present setup.

The application of cuts works e.g. as follows:

key = 0

CutMin(XMREM5) = E5MIN

5.2 Running the Generated Code 59

key = key + Cut(CUT_MREM_E, CUT_MIN)

CutMin(XCOSTH5) = -(1 - COSTH5CUT)

CutMax(XCOSTH5) = +(1 - COSTH5CUT)

key = key + Cut(CUT_COSTH, CUT_MIN + CUT_MAX)

call Split(5, Re(MASS5),

& p, ex,ey,ez, minv, msum, fac, key,

& Var(XMREM5), Var(XCOSTH5), Var(TRIVIAL))

...

The value of the cut is deposited in CutMin or CutMax and ‘registered’ by setting a bit in

the integer variable key passed to Split, e.g. Cut(CUT_MREM_E,CUT_MIN) specifies a cut on

the energy (CUT_MREM_E) from below (CUT_MIN) which is used to restrict the invariant-mass

integration (CUT_MREM_E). Available restrictions are:

Cuts restricting Mi Cuts restricting cosθi

Cut on Key Cut on Key

Mi CUT_MREM cosθi CUT_COSTH

Ei CUT_MREM_E

ki CUT_MREM_K

ET,i CUT_MREM_ET

kT,i CUT_MREM_KT

yi CUT_MREM_RAP

ηi CUT_MREM_PRAP

The transverse energy cut has the slight anomaly that it corresponds to ET =
√

k2
T + m2

rather than k0
√

e2
x + e2

y as the veto cut (see below). The reason is that, because the cuts are

applied by actually restricting the integration bounds, solvability of the cut equations is a

limiting factor.

Imposing veto cuts In many interesting cases, the cut condition(s) cannot straightfor-

wardly be translated into restrictions of the integration limits. They are more easily applied

through veto functions (1 in wanted, 0 in unwanted areas) cuts, i.e. by setting the integrand

to zero in phase-space regions where cut conditions apply.

The veto function is constructed from the following preprocessor macros:

• CUT_E(i) — the energy Ei of particle i,

60 5 TOOLS FOR THE NUMERICAL EVALUATION

• CUT_k(i) — the momentum |~ki| of particle i,

• CUT_ET(i) — the transverse energy ET
i = k0

i

√
e2

ix + e2
iy of particle i,

• CUT_kT(i) — the transverse momentum |~kT
i | of particle i,

• CUT_y(i) — the rapidity yi of particle i,

• CUT_eta(i) — the pseudo-rapidity ηi of particle i,

• CUT_deltatheta(i) — the scattering angle θi between particle i and the z-axis (6 π
2),

CUT_cosdeltatheta(i) — cosθi,

• CUT_deltaalpha(i,j) — the angle αi j between particles i and j (6 π
2),

CUT_cosdeltaalpha(i,j) — cosαi j,

• CUT_deltay(i,j) — the rapidity gap ∆yi j between particles i and j,

• CUT_deltaeta(i,j) — the pseudo-rapidity gap ∆ηi j between particles i and j,

• CUT_R(i,j) — the separation variable ∆R =
√
∆y2

i j +∆ϕ2
i j of particles i and j,

• CUT_rho(i,j) — the separation variable ∆ρ =
√
∆η2

i j +∆ϕ2
i j of particles i and j,

• CUT_yprod(i,j) — the opposite-hemisphere variable yi y j of particles i and j,

• CUT_etaprod(i,j) — the opposite-hemisphere variable ηiη j of particles i and j,

• CUT_invmass(i,j) — the invariant mass Mi j of particles i and j.

The cuts are listed in the CUT1. . . CUT20 definitions in run.F. Together they make up a sin-

gle logical expression in Fortran and may include e.g. logical operators. For example, the

following cut forces particle 3 to have a transverse energy of at least 10 GeV:

#define CUT1 CUT_ET(3) .lt. 10

5.2.5 Convolution

With the system of integration variables, the convolution with arbitrary parton distribution

functions can easily be achieved. Three modules are already included in FormCalc:

• lumi_parton.F = initial-state partons, no convolution.

• lumi_hadron.F = initial-state hadrons, convolution with hadronic PDFs from the

LHAPDF library [WhBG05].

• lumi_photon.F = initial-state photons, convolution with CompAZ spectrum [Za03].

5.2 Running the Generated Code 61

5.2.6 Integration parameters

Depending on the integrand, the actual integration can be fairly tricky to carry out numeri-

cally. 2to3.F employs the CUBA library [Ha04] which offers four integration routines. The

CUBA parameters are chosen in run.F as preprocessor variables:

#define METHOD DIVONNE

#define RELACCURACY 1D-3

#define ABSACCURACY 1D-7

#define VERBOSE 1

#define MINEVAL 0

#define MAXEVAL 50000

#define STATEFILE ""

#define SPIN -1

* for Vegas:

#define NSTART 1000

#define NINCREASE 500

#define NBATCH 1000

#define GRIDNO 0

* for Suave:

#define NNEW 1000

#define NMIN 2

#define FLATNESS 50

* for Divonne:

#define KEY1 47

#define KEY2 1

#define KEY3 1

#define MAXPASS 5

#define BORDER 1D-6

#define MAXCHISQ 10

#define MINDEVIATION .25D0

* for Cuhre:

#define KEY 0

The integration algorithm is selected with METHOD, which can take the values VEGAS, SUAVE,

DIVONNE, and CUHRE. The other preprocessor variables determine parameters of the integra-

62 5 TOOLS FOR THE NUMERICAL EVALUATION

tors and may/should be tuned for a particular integrand, for details see [Ha04].

5.2.7 Compiling and running the code

The code produced by WriteSquaredME is compiled with the commands

./configure

make

The configure script searches for the compilers and necessary libraries and writes out a

makefile by adding the appropriate locations and flags to makefile.in. The ‘usual’ envi-

ronment variables like FC (Fortran compiler) and FFLAGS (Fortran flags) can be used to force

particular choices.

Based on the makefile, the make command then builds the executable. Its default name is

run, which is quite natural because the Fortran compiler sees run.F as the main program, as

mentioned before. The advantage is that for a different run, one can make a copy of run.F,

say run1.F, with different parameters. This new run is compiled with “make run1” and

results in the executable run1. Thus, one can have several executables for different runs in

one directory.

The way the makefile compiles the code is also convenient if one wants to use the generated

subroutine SquaredME alone, i.e. without the surrounding driver programs. The necessary

object files are all placed in the library squaredme.a so that only a single file needs to be

linked. It is possible to build just this library with

make squaredme.a

The executables (run, run1, etc.) are able to calculate differential and integrated cross-

sections for particles of arbitrary polarization depending on the command line.

run p1 . . . pn sqrtS [serialfrom[,serialto[,serialstep]]]

compute the differential cross-section at a

center-of-mass energy sqrtS with the external

particles polarized according to p1 . . . pn.

run p1 . . . pn sqrtSfrom,sqrtSto[,sqrtSstep] [serialfrom[,serialto[,serialstep]]]

compute the integrated cross-section in the energy

range sqrtSfrom–sqrtSto in steps of sqrtSstep, p1 . . . pn

being the polarizations of the external particles.

The pi can take the following values:

5.2 Running the Generated Code 63

u for an unpolarized particle,

t for a transversely polarized particle,

+ for right-circular polarization,

- for left-circular polarization, and

l for longitudinal polarization.

For a scalar particle, the polarization parameter must be present on the command line al-

though its value is ignored. The energies are specified in GeV. If an energy is below thresh-

old, run issues a warning and sets the energy to the threshold + 0.01 GeV.

A serial number range may optionally be added as a third argument, restricting the param-

eter scans. This is normally used only internally by the submit script (see below).

Important: If a particular polarization was already fixed during the algebraic simplification,

e.g. if _Hel = 0 was set in FormCalc to calculate with unpolarized external fermions, the

code thus produced can never compute a cross-section for a different polarization, no mat-

ter how the executable is invoked. Running such code with an incompatible polarization

will in general only result in a wrong averaging factor.

5.2.8 Vectorization

The assembly of the squared matrix element in code generated by FormCalc can be sketched

as in the following figure, where the helicity loop sits at the center of the calculation:

Loop(s) over
√

s & model parameters

Loop(s) over angular variables

Loop over helicities λ1, . . . , λn

σ += ∑c Cc M0
c (λ1, . . . , λn)∗

M1
c (λ1, . . . , λn)

The helicity loop is not only strategically the most desirable but also the most obvious can-

didate for concurrent execution. FormCalc can vectorize the helicity loop using the CPU’s

SIMD instructions (that is, the squared matrix element is computed for several helicity com-

binations at once). The include file distrib.h chooses the distribution properties of the

compiled code. Distribution of scans over parameter space is described in Sect. 5.2.9.

Vectorization is turned on automatically by the configure script if it detects that the CPU and

compiler are capable of it. If this is in conflict with plans to send the executable on a cluster

of computers with heterogeneous SIMD capabilities, run configure with the --generic op-

tion. Then again, SIMD instructions are typically available on recent computers: SSE3 since

64 5 TOOLS FOR THE NUMERICAL EVALUATION

2004, AVX since 2011. To control vectorization ‘by hand’ one needs to specify the preproces-

sor variable SIMD in distrib.h rather than including the file simd.h generated by configure.

SIMD specifies the length of the vector, sensible values are 2 for AVX, 1 for SSE3, and 0 other-

wise. In Fortran the vector length can in principle been chosen arbitrarily though a speedup

is expected only for the mentioned values commensurate with the hardware.

On top of this, the calculation automatically detects and omits helicity combinations con-

tributing negligibly. This feature is controlled by the two environment variables FCHSELN

and FCHSELEPS in the following way: for the first FCHSELN phase-space points, the compu-

tation runs over all helicity combinations h and the absolute value of the squared matrix

element is added up in an array t(h). For subsequent phase-space points, then, only helicity

combinations with a t-value larger than
(
FCHSELEPS ·maxh t(h)

)
are actually computed. Un-

less one intentionally begins sampling e.g. on the borders of phase-space, the default values

FCHSELN = 10 and FCHSELEPS = 10−7 should be sufficient. In case of doubt about the valid-

ity of the result, the value of FCHSELN should be increased, or set to zero (which turns the

detection off).

If algebraic relations between helicities are known from analytic considerations, these can

be specified in Mathematica before calling WriteSquaredME and will restrict the sum over

helicities accordingly. For example:

Hel[2] = -Hel[1];

WriteSquaredME[...]

5.2.9 Scans over parameter space

To perform a scan, the actual calculation needs to be enclosed in a number of do-loops in

which the values of the scanned parameters are changed, i.e. a structure of the form

do 1 para1 = . . .

do 1 para2 = . . . etc.

calculate the cross-section

1 continue

run.F provides several preprocessor variables, LOOP1. . . LOOP20, which may be defined to

contain the do-statements that initiate the loops. Each loop must terminate on statement 1,

just as above. For example, the lines

#define LOOP1 do 1 TB = 10, 50, 5

#define LOOP2 do 1 MA0 = 250, 1000, 250

result in a scan of the form

5.2 Running the Generated Code 65

do 1 TB = 10, 50, 5

do 1 MA0 = 250, 1000, 250

calculate the cross-section

1 continue

The loops are nested inside each other with LOOP1 being the outermost loop. It is not manda-

tory to declare a loop with each LOOPn, also a fixed value may be given as in the following

definition:

#define LOOP1 TB = 30

When scanning over parameter space, it is further necessary to keep track of the parameter

values for each data set. This is done by defining SHOW commands in the preprocessor vari-

ables PRINT1. . . PRINT20 in run.F. The SHOW command two arguments, a string identifying

the variable and then the variable itself. Defining, for example,

#define PRINT1 SHOW "Mh0=", Mh0

causes each data set to be preceded by a line of the form

Mh0= 125.00

Such a scan can be a real CPU hog, but on the other hand, the calculation can be performed

completely independently for each parameter set and is thus an ideal candidate for par-

allelization. The real question is thus not how to parallelize the calculation, but how to

automate the parallelization.

The obstacle to automatic parallelization is that the loops are user-defined and in general

nested. A serial number is introduced to unroll the loops:

serial = 0

LOOP1

LOOP2
...

serial = serial + 1

if(serial not in allowed range) goto 1

calculate cross-section

1 continue

As mentioned before, the serial number range can be specified on the command line so that it

is quite straightforward to distribute patches of serial numbers on different machines. Most

easily this is done in an interleaved manner, since one then does not need to know to which

upper limit the serial number runs, i.e. if there are N machines available, send serial numbers

66 5 TOOLS FOR THE NUMERICAL EVALUATION

1, N + 1, 2N + 1, . . . on machine 1, send serial numbers 2, N + 2, 2N + 2, . . . on machine 2,

etc.

This procedure is automated in FormCalc: The user once creates a .submitrc file in his home

directory and lists there all machines that may be used, one on each line. The only require-

ment is that the machines are binary compatible because the same executable will be started

on each. In the case of multi-processor machines the number of processors is given after the

host name. Empty lines and lines beginning with # are treated as comments. Furthermore,

a line of the form nice n determines the nice value at which the remote jobs are started. For

example:

.submitrc for FormCalc for the institute cluster

start jobs with nice 10:

nice 10

pcxeon1 8

pcxeon2 8

pcjoe

pcath6

pcath7

The executable compiled from FormCalc code, typically called run, is then simply prefixed

with submit. For instance, instead of

run uuuu 500,1000

the user invokes

submit run uuuu 500,1000

The submit script uses ruptime to determine the load of the machines and ssh to log in.

Handling of the serial number is invisible to the user.

5.2.10 Log files, Data files, and Resume

Due to the parallelization mechanism, a single output file is not sufficient. Instead, FormCalc

creates a directory for each invocation of run, e.g. run.UUUU.00200 for a differential cross-

section or run.UUUU.00200-00500:00010 for an integrated cross-section (where 00010 is the

step width in the loop over the energy), opens one log file for each serial number in this

directory, and redirects console output to this file.

5.2 Running the Generated Code 67

Each log file contains both the ‘real’ data and the ‘chatter’ (progress, warning, and error mes-

sages). This has the advantage that no unit numbers must be passed between subroutines

– every bit of output is simply written to the console (unit * in Fortran). It also makes it

easier to pinpoint errors, since the error message appears right next to the corrupted data.

The ‘real’ data are marked by a “|” in column 1 and there exists a simple shell script, data,

to extract the real data from the log file. For example,

data run.UUUU.00200

creates a data file run.UUUU.00200.data containing only the ‘real’ data arranged in three

columns, where the first column is the scattering angle in radians, the second column is the

tree-level cross-section, and the third column is the one-loop correction. For an integrated

cross-section, there are five columns:
√

s, the tree-level cross-section, the one-loop correction,

and the integration errors for the tree-level and one-loop cross-sections. Cross-sections are

computed in picobarn.

The log-file management also provides an easy way to resume an aborted calculation. This

works as follows: when running through the loops of a parameter scan, the log file for a

particular serial number

• may not exist: then it is created with execute permissions,

• may exist, but have execute permissions: then it is overwritten,

• may exist and have read-write permissions: then this serial number is skipped.

The execute permissions, which serve here merely as a flag to indicate an ongoing calcula-

tion, are reduced to ordinary read-write permissions when the log file is closed.

In other words, the program skips over the parts of the calculation that are already finished,

so all the user has to do to resume an aborted calculation is start the program again with the

same parameters.

5.2.11 Shell scripts

turnoff switches off (and on) the evaluation of certain parts of the amplitude, which is a

handy thing for testing. For example, “./turnoff box” switches off all parts of the ampli-

tude with ‘box’ in their name. Invoking turnoffwithout any argument restores all modules.

sfx packs all source files (but not object, executable, or log files) in the directory it is invoked

in into a mail-safe self-extracting archive. For example, if sfx is invoked in the directory

myprocess, it produces myprocess.sfx. This file can e.g. be mailed to a collaborator, who

needs to say “./myprocess.sfx x” to unpack the contents.

68 5 TOOLS FOR THE NUMERICAL EVALUATION

pnuglot produces a high-quality plot in Encapsulated PostScript format from a data file in

just one line. In fact, pnuglot does not even make the plot itself, it writes out a shell script to

do that, thus “./pnuglot mydata” creates mydata.gpl which then runs gnuplot, LATEX, and

dvips to create mydata.eps. The advantage of this indirect method is that the default gnuplot

commands in mydata.gpl can subsequently be edited to suit the user’s taste. Adding a label

or choosing a different line width is, for example, a pretty trivial matter. Needless to say, all

labels are in LATEX and Type 1 fonts are selected to make the EPS file nicely scalable.

pnuglot by default uses commands only available in gnuplot version 3.7 or higher. This

version can be obtained from http://www.gnuplot.info.

pnuglot [opts] file1 file2 . . . make a plot of the data files file1, file2, . . .

options:

-o outfile how to name the output file: the plotting script will

be called outfile.gpl and the actual plot outfile.eps.

The default is outfile = file1.

-2 use only columns 1:2 (usually the tree-level

cross-section) for plotting

-3 use only columns 1:(2+3) (usually the one-loop

corrected cross-section) for plotting

5.3 The Mathematica Interface

The Mathematica interface turns the stand-alone code into a Mathematica function for eval-

uating the cross-section or decay rate as a function of user-selected model parameters. The

benefits of such a function are obvious, as the whole instrumentarium of Mathematica com-

mands can be applied to them. For example, it is quite straightforward, using Mathematica’s

FindMinimum, to determine the minimum (or maximum) of the cross-section over a piece of

parameter space.

Interfacing is done using the MathLink protocol. The changes necessary to produce a Math-

Link executable are quite superficial and affect only the file run.F, where the user has to

choose which model parameters are interfaced from Mathematica.

To make the obvious even clearer, the cross-section is not evaluated in Mathematica, but in

Fortran or C, and only the numerical results are transferred back to Mathematica. One thing

one cannot do thus is to increase the numerical precision of the calculation using Mathemat-

ica commands like SetPrecision.

5.3 The Mathematica Interface 69

5.3.1 Setting up the Interface

The model parameters are specified in the file run.F. Typical definitions for stand-alone

code look like (here from an MSSM calculation with TB = tanβ and MA0 = MA0):

#define LOOP1 do 1 TB = 5, 50, 5

#define LOOP2 MA0 = 500

...

These lines declare TB to be scanned from 5 to 50 in steps of 5 and set MA0 to 500 GeV. To be

able to specify TB in Mathematica instead, the only change is

#define LOOP1 call MmaGetReal(TB)

Such invocations of MmaGetReal and its companion subroutines serve two purposes. At

compile time they determine with which arguments the Mathematica function is generated

(for details see below), and at run time they actually transfer the function’s arguments to the

specified variables.

MmaGetInteger(i) read the integer/real/complex parameter i/r/c

MmaGetReal(r) from Mathematica

MmaGetComplex(c)

MmaGetIntegerList(i,n) read the integer/real/complex parameter list i/r/c

MmaGetRealList(r,n) of length n from Mathematica

MmaGetComplexList(c,n)

Note that without a separate MmaGetReal call, MA0 would still be fixed by the Fortran state-

ment, i.e. not be accessible from Mathematica.

Once the makefile detects the presence of these subroutines, it automatically generates inter-

facing code and compiles a MathLink executable. For a file run.F the corresponding Math-

Link executable is also called run, as in the stand-alone case. This file is not started from the

command-line, but used in Mathematica as

Install["run"]

5.3.2 The Interface Function in Mathematica

After loading the MathLink executable with Install, a Mathematica function of the same

name is available. For definiteness, we will call this function ‘run’ in the following since

‘run.F’ is the default parameter file. This function has the arguments

70 5 TOOLS FOR THE NUMERICAL EVALUATION

run[sqrtS, arg1, arg2, ..., options]

run[{sqrtSfrom, sqrtSto[, sqrtSstep]}, arg1, arg2, ..., options]

The first form computes a differential cross-section at
√

s = sqrtS. The second form computes

a total cross-section for energies
√

s varying from sqrtSfrom to sqrtSto in steps of sqrtSstep.

This is in one-to-one correspondence with the command-line invocation of the stand-alone

executable.

The arg1, arg2, . . . , are the model parameters declared automatically by the presence of their

MmaGet{Real,Complex} calls (see above). They appear in the argument list in the same order

as the corresponding MmaGet{Real,Complex} calls.

Other parameters are specified through the options.

Default Value default value

Polarizations "UUUU" the polarizations of the external

particles

Serial {} the range of serial numbers to compute

SetNumber 1 a set number beginning with which

parameters and data are stored

ParaHead Para the head under which parameters are

stored

DataHead Data the head for the data storage

LogFile "" the log file to save screen output in

Polarizations determines the polarizations of the external particles, specified as in the

stand-alone version, i.e. a string of characters for each external leg:

u unpolarized, l longitudinal polarization,

t transversely polarized, - left-handed polarization,

+ right-handed polarization.

Serial gives the range of serial numbers for which to perform the calculation, specified as

{serialfrom[, serialto[, serialstep]]}. The concept of serial numbers, used to distribute param-

eter scans, is described in Sect. 5.2.9. This option applies only to parameters scanned by

do-loops in the parameter statements. Parameters read from Mathematica are unaffected by

this option.

SetNumber specifies the set number beginning with which parameters and data are stored

(see next Section).

5.3 The Mathematica Interface 71

ParaHead gives the head under which parameters are stored, i.e. parameters are retrievable

from parahead[setnumber] (see next Section).

DataHead gives the head under which data are stored, i.e. data are retrievable from

datahead[setnumber] (see next Section).

LogFile specifies the log-file to save screen output in. An empty string indicates no output

redirection, i.e. the output will appear on screen.

5.3.3 Return values, Storage of Data

The return value of the generated function is an integer which records how many parame-

ter and data sets were transferred. Assigning parameter and data sets as the data become

available has several advantages:

• the return value of run is an integer rather than a large, bulky list,

• the parameters corresponding to a particular data set are easy to identify, e.g.

Para[4711] contains the parameters corresponding to Data[4711],

• most importantly, if the calculation is prematurely aborted, the parameters and data

transferred so far are still accessible.

Both, the starting set number and the heads of the parameter and data assignments can be

chosen with the options SetNumber, ParaHead, and DataHead, respectively.

The parameters which are actually returned are chosen by the user in the PRINTn statements

in run.F in much the same way as parameters are selected for printout in the stand-alone

code. To specify that TB and MA0 be returned, one needs the definitions

#define PRINT1 call MmaPutReal("TB", TB)

#define PRINT2 call MmaPutReal("MA0", MA0)

Notwithstanding, parameters can still be printed out, in which case they end up in the log

file (or on screen, if no log file is chosen). To transfer e.g. TB to Mathematica and print it out,

one would use

#define PRINT1 call MmaPutReal("TB", TB)

#define PRINT2 SHOW "TB", TB

An analogous subroutine exists of course for integer and complex parameters, too.

72 5 TOOLS FOR THE NUMERICAL EVALUATION

MmaPutInteger(s, i) transfer the integer/real/complex parameter i/r/c

MmaPutReal(s, r) to Mathematica under the name s

MmaPutComplex(s, c)

MmaPutIntegerList(s, i, n) transfer the integer/real/complex parameter list

MmaPutRealList(s, r, n) i/r/c of length n to Mathematica under the name s

MmaPutComplexList(s, c, n)

The parameters are stored in the form of rules in Mathematica, i.e. as name -> value. The first

argument specifies the left-hand side of this rule. It need not be a symbol in the strict sense,

but can be an arbitrary Mathematica expression. But note that in particular the underscore

has a special meaning in Mathematica and may not be used in symbol names. The second

argument is then the right-hand side of the rule and can be an arbitrary Fortran expression

containing model parameters, kinematic variables, etc.

The following example demonstrates the form of the parameter and data assignments.

Shown are results of a differential cross-section for a 2 → 2 reaction at one point in MSSM

parameter space. Within the data the varied parameter is cosθ, the scattering angle.

Para[1] = { TB -> 1.5, MUE -> -1000., MSusy -> 1000.,

MA0 -> 700., M2 -> 100. }

Data[1] = { DataRow[{500., -0.99},

{0.10592302458950732, 0.016577997941111422},

{0., 0.}],

DataRow[{500., -0.33},

{0.16495552191438356, 0.014989931149150608},

{0., 0.}],

DataRow[{500., 0.33},

{0.2986891221231292, 0.015013326141014818},

{0., 0.}],

DataRow[{500., 0.99},

{0.5071238252157443, 0.012260927614082411},

{0., 0.}] }

DataRow[v, r, e] a row of data with kinematic variables v,

cross-section or decay-rate results r, and integration

error e

The DataRow[v, r, e] function has three arguments:

• the unintegrated kinematic variables (v = {√s, cosθ} above),

5.3 The Mathematica Interface 73

• the cross-section or decay-rate results (r = {tree-level result, one-loop correction}
above), and

• the respective integration errors (e = {0, 0} above, as this example originates from the

computation of a differential cross-section where no integration is performed).

5.3.4 Using the Generated Mathematica Function

To the Mathematica novice it may not be obvious how to use the function described above

to analyse data, produce plots, etc.

As an example, let us produce a contour plot of the cross-section in the MA0–tanβ plane. It

is assumed that the function run has the two parameters MA0 and TB in its argument list:

Install["run"]

xs[sqrtS_, MA0_, TB_] := (

run[{sqrtS, sqrtS}, MA0, TB];

Data[1][[1,2]])

ContourPlot[xs[500, MA0, TB], {MA0, 100, 500}, {TB, 5, 50}]

The function xs runs the code and selects the data to plot. The first argument of run,

{sqrtS, sqrtS}, instructs the code to compute the total cross-section for just one point in

energy. We then select the first (and only) DataRow in the output and choose its second argu-

ment, the cross-section results: Data[1][[1,2]].

This example can be extended a little to produce a one-dimensional plot where e.g. for

each value of tanβ the minimum and maximum of the cross-section with respect to MA0

is recorded:

<< Graphics‘FilledPlot‘

xsmin[sqrtS_, TB_] :=

FindMinimum[xs[sqrtS, MA0, TB], {MA0, 100}][[1]]

xsmax[sqrtS_, TB_] :=

-FindMinimum[-xs[sqrtS, MA0, TB], {MA0, 100}][[1]]

FilledPlot[{xsmin[500, TB], xsmax[500, TB]}, {TB, 5, 50}]

74 5 TOOLS FOR THE NUMERICAL EVALUATION

5.4 Renormalization Constants

FormCalc provides a number of functions to facilitate the computation of renormalization

constants (RCs). FormCalc makes a conceptual distinction between the definition and the

calculation of RCs.

5.4.1 Definition of renormalization constants

FormCalc regards those symbols as RCs for which a definition of the form

RenConst[rc] := ...

exists. The purpose of the definition is to provide the functional relationship between the

RC and the self-energy from which it is calculated, for example

RenConst[dMHsq1] := ReTilde[SelfEnergy[S[1] -> S[1], MH]]

Note that this definition is quite generic, in particular it contains no details about the selec-

tion of diagrams. It is intentional that the specifics of the diagram generation and calculation

are chosen only when the RCs are actually calculated because this allows the user to make se-

lections on a process-by-process basis. For example, one can calculate the main process and

the RCs in one program such that the options chosen for the former (e.g. for InsertFields)

automatically apply to the latter.

The definitions of the RCs can be made anywhere before one of the functions that calculates

them is invoked. A particularly convenient location is in the model file to which the RCs

belong. This is the case for the model files that come with the current versions of FeynArts,

where the definitions of the RCs are implemented according to the on-shell scheme of [De93].

The definition of an RC may make use of the following functions. They may be used in the

model file or anywhere else, even if FormCalc is not loaded.

5.4 Renormalization Constants 75

SelfEnergy[i-> f,m] the self-energy Σif (k
2 = m2)

DSelfEnergy[i-> f,m] the derivative ∂Σif (k
2)/∂k2

∣∣
k2=m2

TreeCoupling[i-> f] the tree-level contribution to i → f without external

spinors

VertexFunc[i-> f] the one-loop contribution to i → f without external

spinors

LVectorCoeff[expr] the coefficient of /kPL in expr

RVectorCoeff[expr] the coefficient of /kPR in expr

LScalarCoeff[expr] the coefficient of PL in expr

RScalarCoeff[expr] the coefficient of PR in expr

ReTilde[expr] takes the real part of loop integrals in expr

ImTilde[expr] takes the imaginary part of loop integrals in expr

Most RCs fall into one of the following categories, for which special functions exist to save

typing and reduce errors. (The width is of course not an RC, but is also listed here as its

computation is very similar to that of an RC.)

MassRC[f] the mass RC δMf

MassRC[f1, f2] the mass RC δMf1f2

FieldRC[f] the field RC δZf

FieldRC[f1, f2] the field RC δZf1f2

TadpoleRC[f] the tadpole RC δTf

WidthRC[f] the width Γ f

The explicit formulas for computing the RCs are given in the following. For compact-

ness of notation, f refers to a fermion and B to a boson field and ∂Σ(m2) is short for

76 5 TOOLS FOR THE NUMERICAL EVALUATION

∂Σ(k2)/∂k2
∣∣
k2=m2 .

δM f = R̃e ΣF
f f (m f , 1

2 , 1
2) , δMB = R̃e ΣBB(m

2
B) ,

δMB1B2
=

1

2
R̃e

(
ΣB2B1

(m2
B1
) + ΣB2B1

(m2
B2
)
)

,

δZ f = − R̃e

Σ

VL
f f + ∂ΣF

f f (m f , m f , m f)

ΣVR
f f + ∂ΣF

f f (m f , m f , m f)

 , δZB = − R̃e ∂ΣBB(m

2
B) ,

δZ f1 f2
=

2

m2
f1
− m2

f2

R̃e

Σ

F
f2 f1

(m f2
, m f2

, m f1
)

ΣF
f2 f1

(m f2
, m f1

, m f2
)

 , δZB1B2

=
2

m2
B1
− m2

B2

R̃e ΣB2B1
(m2

B2
) ,

δTB = −ΣB(m
2
B) ,

Γ f = Ĩm ΣF
f f (m f , 1, 1) , ΓB =

1

mB
Ĩm ΣBB(m

2
B) ,

where

ΣF(m,α,β) = m
[
α ΣVL(m2) +βΣVR(m2)

]
+βΣSL(m2) +α ΣSR(m2) .

5.4.2 Calculation of renormalization constants

For the actual calculation of the RCs, FormCalc provides the two functions CalcRenConst

and WriteRenConst. Both functions search the expressions they receive as arguments for

symbols which are RCs. CalcRenConst returns the calculated RCs as a list of rules whereas

WriteRenConst writes them to a program file.

CalcRenConst[expr] calculate the RCs appearing in expr and return the

results as a list of rules

WriteRenConst[expr, dir] the same, but write the results to a program in the

code directory dir

WriteRenConst writes out the subroutine CalcRenConst as well as the declarations of the

RCs in renconst.h. It shares a number of options regarding the technicalities of code gen-

eration with WriteSquaredME. In the following table, if the default value coincides with the

option name this means that the value is taken from the WriteSquaredME options.

5.4 Renormalization Constants 77

option default value

Folder "renconst" the subdirectory of the code directory

into which the generated code is written

FilePrefix FilePrefix a string prepended to the filenames of

the generated code

SymbolPrefix SymbolPrefix a string prepended to global symbols to

prevent collision of names when more

than one process is linked

FileHeader FileHeader the file header

FileIncludes FileIncludes per-file #include statements

SubroutineIncludes Subroutine\ per-subroutine #include statements

Includes

The calculation of the RCs and the underlying self-energies can be influenced and inspected

in various ways.

The functions SelfEnergy and DSelfEnergy, used in the definitions of the RCs, are invoked

when the RCs are calculated. They call CreateTopologies, InsertFields, CreateFeynAmp,

and CalcFeynAmp and use whatever options have been set with SetOptions at that time.

Computing the RCs with the same options as the virtual diagrams is just the right thing in

most cases. For finer control, the amplitude generation can be modified in two ways.

Firstly, hooks are provided for CreateTopologies, InsertFields, and CreateFeynAmp.

CreateTopologiesHook[args] CreateTopologies for [D]SelfEnergy

InsertFieldsHook[args] InsertFields for [D]SelfEnergy

CreateFeynAmpHook[args] CreateFeynAmp for [D]SelfEnergy

For example, [D]SelfEnergy does not call InsertFields directly, but the intermediate func-

tion InsertFieldsHook which by default simply redirects to the FeynArts function:

InsertFieldsHook[args__] := InsertFields[args]

InsertFieldsHook can be redefined either generally or for a specific process, e.g.

InsertFieldsHook[tops_, f1_F -> f2_F] :=

InsertFields[tops, f1 -> f2, ExcludeParticles -> V[1]]

would exclude photons in fermion self-energies.

Secondly, it is possible to specify options for individual RCs, as in

Options[dMWsq1] = {Restrictions -> NoSUSYParticles}

78 5 TOOLS FOR THE NUMERICAL EVALUATION

Any CreateTopologies, InsertFields, and CreateFeynAmp options may be given here and

apply only to the calculation of this particular renormalization constant.

The SEHook function finally governs setting the computed self-energy on-shell.

SEHook[se, amp, K2 -> m2] returns amp with K2 replaced by m2

Attention: SEHook has attribute HoldAll (otherwise it would not be very useful). The se ar-

gument contains the original [D]SelfEnergy call and is for pattern matching or printout (in

HoldForm) only – it will recurse if evaluated directly. The amp argument should not be eval-

uated more than once, as it triggers the computation of the self-energy. The m2 argument

should be evaluated after amp as it likely contains instances of TheMass which can success-

fully be resolved only after model initialization in amp.

The various intermediate results are stored in global variables where they can be inspected

immediately after calling [D]SelfEnergy.

$RCTop the output of CreateTopologies. . .

$RCIns the output of InsertFields. . .

$RCAmp the output of CreateFeynAmp. . .

$RCRes the output of CalcFeynAmp. . .

. . . in the last invocation of [D]SelfEnergy

During the calculation, PaintSE[$RCIns] and PutSE[{$RCTop,$RCIns,$RCAmp,$RCRes}]

are called, which allows to paint the diagrams and store the intermediate results by setting

$PaintSE and $PutSE, respectively.

PaintSE[ins] same as PaintSE[ins, $PaintSE]

PaintSE[ins, True] paint the diagrams ins

PaintSE[ins, pre] paint the diagrams ins and store the output in

preN.ps, where N = ProcName[ins]

PutSE[{top, ins, amp, res}] same as PutSE[{top,ins,amp,res}, $PutSE]

PutSE[{top,ins,amp,res}, pre] store the results in preN.{top,ins,amp,res},

where N = ProcName[ins]

variable default value

$PaintSE False whether to paint the diagrams

$PutSE False whether to save the intermediate results

If a string is given for $PaintSE or $PutSE it is used as a prefix for the filename and may

5.5 Infrared Divergences and the Soft-photon Factor 79

include a path name, where subdirectories are created as needed.

For performance reasons, SelfEnergy and DSelfEnergy remember the values they have

computed. In unlikely cases it may happen that the user changes settings that affect the gen-

eration of diagrams but are not recognized by SelfEnergy and DSelfEnergy. This would

mean that results are returned which are no longer correct. In such a case, the cached values

can be removed with ClearSE[].

Similar to the functions FormSub, FormDot, etc., there are simplification wrappers specifically

for RCs:

RCSub[subexpr] a function applied to subexpressions extracted by

FORM

RCInt[intcoeff] a function applied to the coefficients of loop

integrals in the FORM output

5.5 Infrared Divergences and the Soft-photon Factor

Infrared divergences appear in processes with charged external particles. They originate

from the exchange of virtual photons. More precisely they come from diagrams containing

structures of the form

.

.

.

ki

k j

γ loop

m2
j−1 = k2

j

m2
i = k2

i

Such diagrams are IR divergent because the photon is massless; if the photon had a mass λ,

the divergent terms would be proportional to log λ.

A note on the numerical implementation: In LoopTools it is not necessary to introduce a pho-

ton mass by hand: if a requested integral is IR divergent, LoopTools automatically regularizes

the divergence with a photon mass λ, but treats λ as an infinitesimal quantity, which means

that terms of order λ or higher are discarded. In practice, λ is a user-definable numerical

constant. Since the final result should not depend on it after successful removal of the IR

divergences, it can be given an arbitrary numerical value despite its infinitesimal character.

The divergences in the diagrams with virtual photon exchange exactly cancel those in the

emission amplitude of soft (i.e. low-energetic) photons off the external legs. Soft-photon ra-

80 6 POST-PROCESSING OF THE RESULTS

diation is always present experimentally: because photons are massless, they can have arbi-

trarily low energies and therefore escape undetected. So while the unphysical λ-dependence

cancels, the final result depends instead on a detector-dependent quantity Emax
soft , the maxi-

mum energy a soft photon may have without being detected.

In a one-loop calculation one needs to take into account the bremsstrahlung off the Born

diagrams to be consistent in the order ofα. Dealing with soft photons is relatively easy since

the soft-photon cross-section is always proportional to the Born cross-section:
[

dσ

dΩ

]

SB

= δSB

[
dσ

dΩ

]

Born

where “SB” stands for soft bremsstrahlung.

The soft-photon factor δSB is implemented in main.F using the formulas of [De93]. It is

controlled by the following two preprocessor statements in process.h.

c#define PHOTONRADIATION SOFT

#define ESOFTMAX .1D0*sqrtS

The first flag, PHOTONRADIATION, is commented out by default. To switch on soft-photon

corrections, take out the c before the #define. The second line determines the energy cutoff

Emax
soft .

6 Post-processing of the Results

6.1 Reading the data files into Mathematica

The format in which data are written out by main.F is directly practical only for making

plots of the cross-section over the energy or some phase-space variable. In many circum-

stances one needs to make more sophisticated figures in which the data are either arranged

differently, or are run through some filter or calculation. Consider, for example, performing

a scan over some region in parameter space and then wanting to plot the band of allowed

values of the cross-section, i.e. the minimum and maximum with respect to the parameter

variations for each point in phase space.

Given the variety of operations one could conceivably perform on the data, a Fortran or

C program would sooner or later prove too inflexible. Instead, there is a utility program

with which it is possible to read the data into Mathematica, where it is much easier to further

process the data sets and eventually produce plots of whatever function of whatever data

set one is interested in.

The data files are read into Mathematica with the MathLink program ReadData, which is used

in the following way:

6.1 Reading the data files into Mathematica 81

In[1]:= Install["ReadData"];

In[2]:= ReadData["run.uuuu.00300-01000.data"]

Out[2]= 24

The data are stored in Mathematica as separate data and parameter sets. These sets are ac-

cessed through an integer argument, e.g. Data[1] and Para[1]. ReadData returns the num-

ber of sets read (24 in this example).

The data files have to be roughly in the format used by main.F, i.e. a number of lines begin-

ning by # in which the parameters are given, followed by columns of data. The following

example shows this format:

TB= 1.50

MUE=-1000.00

MSusy= 1000.00

MA0= 700.00

M_2= 100.00

160.790000000000 0.264226254743272 0.502096473139054

190.482475649966 10.7918866098049 9.58435238790029

211.567524166608 11.8170727823835 10.3862900941921

TB= 1.50

MUE=-1000.00

MSusy= 1000.00

MA0= 700.00

M_2= 400.00

160.790000000000 0.264226254743272 0.502510502734037

190.482475649966 10.7918866098049 9.60119470492217

211.567524166608 11.8170727823835 10.4047052203442

The output of ReadData for this file is 2, hence there are then two data and two parameter

sets defined,

Para[1] = { TB -> 1.5, MUE -> -1000., MSusy -> 1000.,

MA0 -> 700., M$2 -> 100. }

Data[1] = { {160.79, 0.264226, 0.502096},

{190.482, 10.7919, 9.58435},

{211.568, 11.8171, 10.3863} }

82 6 POST-PROCESSING OF THE RESULTS

Para[2] = { TB -> 1.5, MUE -> -1000., MSusy -> 1000.,

MA0 -> 700., M$2 -> 400. }

Data[2] = { {160.79, 0.264226, 0.502511},

{190.482, 10.7919, 9.60119},

{211.568, 11.8171, 10.4047} }

The numbers have not suffered in accuracy; it is a peculiarity of Mathematica to display real

numbers with no more than six digits by default. Note also that the underscore in M_2 which

is not allowed in symbol names in Mathematica has been replaced by a $.

ReadData[f,n, hpara, hdata] read the data file f into parameter and data sets in

Mathematica; with the optional parameters n, hpara,

and hdata one can choose to start numbering the sets

with n, use head hpara instead of Para, and use head

hdata instead of Data

Data[n] the nth data set

Para[n] the nth parameter set

In addition, ReadData has a handy way of applying operations to each line of data: it does

not, in fact, put each line of numbers in a list, but in a function called DataRow. By default,

DataRow is equal to List. Now consider that instead of the absolute values of the cross-

section, which is what main.F calculates by default, you want e.g. the relative deviation of

the one-loop and the tree-level cross-section. All it needs to achieve this is to redefine the

DataRow function as follows:

Clear[DataRow];

DataRow[x_, tree_, loop_] := {x, loop/tree}

(This works because main.F puts the tree-level result in the second column and the one-loop

correction in the third column.)

function default value

DataRow List the function which is applied to each

row of data in a file read by ReadData

6.2 Special graphics functions for Parameter Scans

A common way of displaying information from scans over the parameter space is either as

a three-dimensional plot, or as a density plot. Usually the height of the figure (represented

6.2 Special graphics functions for Parameter Scans 83

by levels of grey in the case of a density plot) then determines exclusion limits or similar

information.

The standard Mathematica plotting functions Plot3D and DensityPlot require functions to

be plotted, not arrays of numbers. Although this can be circumvented by using interpolating

functions, there are two considerable disadvantages of this method: first, the grid used by

the plotting function in general does not represent the calculated points§; second, there is no

control over missing values.

For this reason, two graphics functions for 3D and density plots have been included in Form-

Calc in the ScanGraphics package. They are especially designed for parameter-scan plots in

that they use a grid which precisely matches the computed values, and that they can deal

with missing values.

ScanPlot3D[v1, v2, n, opts]

ScanDensityPlot[v1, v2, n, opts]

ScanContourPlot[v1, v2, n, opts]

make a 3D, density, or contour plot of a quantity

which has been computed for different values of v1

and v2, with v1 und v2 displayed on the x- and

y-axes. The data to be plotted are assumed to be in

the data sets Data[1]. . . Data[n]. The argument opts

may contain additional 3D (2D) graphics options.

Both functions cooperate closely with the ReadData function described in the last section.

The argument n which specifies the number of data sets to be taken is usually just the output

of ReadData.

ScanPlot3D and ScanDensityPlotdetermine the grid on a democratic-vote basis: they make

a list of all the spacings {∆v1, ∆v2} between any two points and take the values of ∆v1 and

∆v2 that occur most often. (This of course assumes that the grid is equidistantly spaced.)

Points on this grid which do not correspond to a data point are missing points. If missing

points are detected, both graphics functions issue a warning and deposit the coordinates of

the missing points in the variable $MissingPoints for checking.

§In fact, if the plotting function uses a grid which differs very slightly from the grid of data points, the plot

may even display some funny bumps which are artifacts of the interpolation.

84 7 LOW-LEVEL FUNCTIONS FOR CODE OUTPUT

7 Low-level functions for code output

FormCalc’s code-generation functions, used internally e.g. by WriteSquaredME, can also be

used directly to write out an arbitrary Mathematica expression as optimized code. The basic

syntax is very simple:

1. handle = OpenCode["file.F"]

opens file.F as a Fortran file for writing,

2. WriteExpr[handle, {var -> expr, . . . }]

writes out Fortran code to calculate expr and store the result in var,

3. Close[handle]

closes the file again.

The code generation is fairly sophisticated and goes well beyond merely applying Mathe-

matica’s FortranForm. The generated code is optimized, e.g. common subexpressions are

pulled out and computed in temporary variables. Expressions too large for Fortran are split

into parts, as in

var = part1

var = var + part2

...

If the expression is too large even to be sensibly evaluated in one file, the FileSplit function

can distribute it on several files and optionally write out a master subroutine which calls the

individual parts.

To further automate the code generation, such that the resulting code needs few or no

changes by hand, many ancillary functions are available.

7.1 File handling, Type conversion

MkDir[dirs] make sure the directory dirs exists, creating

subdirectories as necessary

OpenCode[file] open file for writing code

TimeStamp[] return a string with the current date and time

ToCode[expr] return a string with the Fortran (or C) form of expr

ToSymbol[args] concatenate args into one symbol

ToList[expr] return a list of summands of expr

7.2 Writing Expressions 85

MkDir["dir1", "dir2", . . .] makes sure the directory dir1/dir2/. . . exists, creating the indi-

vidual subdirectories dir1, dir2, . . . as necessary. It works roughly as mkdir -p in Unix.

OpenCode[file] opens file for writing code.

TimeStamp[] returns a string with the current date and time.

ToCode[expr] returns the Fortran (or C) form of expr as a string.

ToSymbol[args] concatenates its arguments into a new symbol, e.g. ToSymbol[a,1, {x, y}]

gives a1xy.

ToList[expr] returns a list of summands of expr, i.e. turns a sum of items into a list of items.

7.2 Writing Expressions

PrepareExpr[exprlist] prepare exprlist for write-out to code

WriteExpr[file, exprlist] write exprlist to file

CodeExpr[v, t, exprlist] the expressions exprlist with variables v and

temporary variables t in a form ready for write-out

by WriteExpr

RuleAdd[a,b] same as a -> a + b

DebugLine[s] a debugging statement for variable s

NoDebug[expr] do not generate a debugging statement for expr

$SymbolPrefix a string prepended to all externally visible symbols

to avoid symbol conflicts

PrepareExpr[{var1 -> expr1, var2 -> expr2, . . . }] prepares a list of variable assignments

for write-out to a code file. Expressions with a leaf count larger than $BlockSize are split

into several pieces, as in

var = part1

var = var + part2

...

thereby possibly introducing temporary variables for subexpressions. SumOver, DoLoop, and

IndexIf objects are properly taken into account as do-loops and if-statements. The output is

a CodeExpr[vars, tmpvars, exprlist] object, where vars are the original and tmpvars the tem-

porary variables introduced by PrepareExpr.

WriteExpr[file, exprlist] writes a list of variable assignments to file. The exprlist can either

be a CodeExpr object, i.e. the output of PrepareExpr, or a list of expressions of the form

{var1 -> expr1, var2 -> expr2, . . . }, which is first converted to a CodeExpr object using

86 7 LOW-LEVEL FUNCTIONS FOR CODE OUTPUT

PrepareExpr. WriteExpr returns a list of the subexpressions that were actually written.

CodeExpr[vars, tmpvars, exprlist] is the output of PrepareExpr and contains a list of expres-

sions ready to be written to a file, where vars are the original variables and tmpvars are tem-

porary variables introduced in order to shrink individual expressions to a size small enough

for Fortran.

RuleAdd[var, expr] is equivalent to var -> var + expr.

DebugLine[s] translates to a debugging statement for variable s (print-out of variable s) in

the code.

Assignments of the form NoDebug[var -> expr] never generate debugging/checking state-

ments, regardless of the value of DebugLines or DebugLabel.

$SymbolPrefix is a string prepended to all externally visible symbols in the generated code

to avoid symbol collisions.

PrepareExpr option default value

Optimize False whether to introduce temporary

variables for common subexpressions

Expensive {} objects which should be hoisted from

inner loops as far as possible

MinLeafCount 10 the mininum leaf count above which a

subexpression becomes eligible for

abbreviationing

DebugLines 0 whether to generate debugging/

checking statements for every variable

DebugLabel True whether and which label to use in

debugging/checking statements

MakeTmp Identity a function for introducing user-defined

temporary variables

Declarations (Rule | RuleAdd)[v_,_] :> v

a Cases pattern for selecting variable

declarations

FinalTouch Identity a function which is applied to the final

subexpressions

ResetNumbering True whether to number dupn and tmpn

variables from n = 1

Optimize determines whether variables should be introduced for subexpressions which are

7.2 Writing Expressions 87

used more than once.

Expensive lists patterns of objects which are expensive in terms of CPU time and should

therefore be hoisted from inner do-loops if possible.

MinLeafCount specifies the minimum leaf count a common subexpression must have in or-

der that a variable is introduced for it.

DebugLines specifies whether debugging and/or checking statements are generated for each

expression. Admissible values are 0 = no statements are generated, 1 = debugging state-

ments are generated, 2 = checking statements are generated, 3 = debugging and checking

statements are generated. Debugging messages are usually generated for the expressions

specified by the user only. To cover intermediate variables (e.g. the ones introduced for op-

timization), too, specify the negative of the values above.

DebugLabel specifies with which label debugging/checking statements are printed. False

disables printing, True prints the variable name, and a string prefixes the variable name.

Any other value is understood as a function which is queried for each variable assignment

and its output, True, False, or a string, individually determines generation of the debug

statement for each variable assignment.

Debugging/checking statements come in three kinds, 1, −2, and 2. Type 1 are debugging

statements of the form

var = expr

DEB("var", var)

Type −2 and 2 are (pre and post) checking statements of the form

CHK_PRE(var)

var = expr

CHK_POST("var", var)

The actual statements are constructed from $DebugCmd[t], t = 1,−2, 2, which gives the

debugging statement in StringForm format with three arguments: prefix (string), variable

name (string), variable value (number). For example, the default setting for debugging state-

ments is

$DebugCmd[1] = "DEB(\"‘1‘‘2‘\", ‘3‘)\n"

which refers to the preprocessor macro DEB that might be defined in Fortran as

#define DEB(tag,var) print *, tag, var

The statements are further enclosed by the strings in $DebugPre[t] and $DebugPost[t],

which serves e.g. to enable debugging, as in:

88 7 LOW-LEVEL FUNCTIONS FOR CODE OUTPUT

$DebugPre[1, level_:4] := "#if DEBUG >= " <> ToString[level] <> "\n"

$DebugPost[1] = "#endif\n"

Here debugging would be activated at compile time if the preprocessor variable DEBUG (de-

bug level) is larger than 2.

MakeTmp specifies a function for introducing user-defined temporary variables, e.g. ToVars.

Declarations specifies a pattern suitable for use in Cases that selects all objects to be de-

clared as variables.

FinalTouch gives a function which is applied to each final subexpression, just before write-

out to file.

ResetNumbering resets the internal numbering of variable names created by PrepareExpr,

i.e. variables of the form dupn (from Optimize) and tmpn (from Expensive) start at n = 1. It

may be necessary to disable this reset e.g. if more than one generated expression shall be put

in the same program unit.

The prefixes for temporary and optimization variables, i.e. the tmp in tmp123 and the dup in

dup123, may respectively be changed with $TmpPrefix and $DupPrefix.

Note: these options may also be given to WriteExpr which simply hands them down to

PrepareExpr. They cannot be set using SetOptions[WriteExpr,...], however.

7.2 Writing Expressions 89

WriteExpr option default value

HornerStyle True whether to order expressions according

in Horner form

FinalCollect False whether to collect factors in the final

expression

FinalFunction Identity a function to apply to the final

expression before write-out

Type False the type of the expressions, False to

omit declarations

TmpType "ComplexType" the type of temporary variables

IndexType False the type of indices

DeclIf False whether to separate declarations and

code by #if statements

RealArgs {A0,A00,B0,B1, functions whose arguments must be

B00,B11,B001, of a guaranteed type (default: real)

B111,DB0,DB1,

DB00,DB11,

B0i,C0i,D0i,

E0i,F0i,Bget,

Cget,Dget,Eget,

Log,Sqrt}

Newline "" a string to be printed after each

expression

HornerStyle specifies whether expressions are ordered in Horner form before writing them

out as code.

FinalCollect chooses a final collecting of common factors, after going over to Horner form,

just before write-out to code.

FinalFunction specifies a function to be applied to the final expressions, just before write-

out to code. This function can be used to apply language-specific translations.

Type determines whether declarations shall be generated for the variables and of which type.

If a string is given, e.g. Type -> "double precision", WriteExpr writes out declarations of

that type for the given expressions. Otherwise no declarations are produced.

TmpType is the counterpart of Type for the temporary variables. TmpType -> Type uses the

settings of the Type option.

90 7 LOW-LEVEL FUNCTIONS FOR CODE OUTPUT

IndexType likewise determines the generation of declarations for do-loop indices.

DeclIf -> var, where var is a string suitable for a preprocessor variable, separates declara-

tions and code in the form

#ifndef var

#define var

[declarations]

#else

[code]

#endif

A file so generated is supposed to be included once in the declarations section and once in the

code part. This can be necessary in particular in Fortran, if e.g. non-declaration statements

such as statement functions need to be placed between declarations and code.

RealArgs gives a list of functions whose numerical arguments must be of a guaranteed type,

usually real (double precision). For example, if the function foo expects a single real argu-

ment, it must be invoked as foo(0D0) in Fortran, not foo(0).

RealArgs[foo] := ... defines the actual conversion for foo. The default is to map NArgs

over all arguments. NArgs[args] returns args with all integers turned into reals. Note that

NArgs is not quite the same as N: while it changes 1 to 1., it leaves e.g. m[1] intact so that

array indices remain integers.

Newline specifies a string to be printed after each statement.

7.3 Variable lists and Abbreviations

OnePassOrder[list] order list such that the definition of each item comes

before its first use

MoveDepsRight[r1, . . . ,rn] move variables among the lists r1, . . . ,rn such that a

definition does not depend on ri further to the right

MoveDepsLeft[r1, . . . ,rn] move variables among the lists r1, . . . ,rn such that a

definition does not depend on ri further to the left

OnePassOrder[r] orders a list of interdependent rules such that the definition of each item

(var -> value) comes before its use in the right-hand sides of other rules. When OnePassOrder

detects a recursion among the definitions of a list, it deposits the offending rules in an inter-

nal format in $OnePassDebug as debugging hints.

MoveDepsRight[r1, . . . , rn] shuffles variable definitions (var -> value) among the lists of

rules ri such that the definitions in each list do not depend on definitions in ri further to

7.3 Variable lists and Abbreviations 91

the left. For example, MoveDepsRight[{a-> b}, {b -> 5}] produces {{}, {b -> 5, a -> b}},

i.e. it moves a -> b to the right list because it depends on b.

MoveDepsLeft[r1, . . . , rn] shuffles variable definitions (var -> value) among the lists of rules

ri such that the definitions in each list do not depend on definitions in ri further to the

right. For example, MoveDepsLeft[{a-> b}, {b -> 5}] produces {{b -> 5, a -> b}, {}}, i.e.

it moves b -> 5 to the left list because that depends on b.

ToVars[patt, name][exprlist] introduce variables for all subexpressions in exprlist

matching patt

ToVars[patt, name][exprlist] introduces variables for subexpressions matching patt and ex-

pects to be used on an expression list such as given to PrepareExpr. To make the new vari-

ables temporary (in the CodeExpr sense), ToVars should be applied through PrepareExpr’s

MakeTmp option. Unlike with Abbreviate, the variables introduced are not subscripted by

loop indices and hence also not hoisted outside a DoLoop. The new variable definitions are

inserted at the right places into the exprlist.

Why move certain subexpressions to variables at all? Firstly, it makes it easier to inspect/

debug their values, using the DebugLine option. Secondly, and in contrast to abbreviations

introduced for optimization reasons (e.g. by the Expensive or Optimize options), it can im-

prove the readability of the generated code by well-chosen variable names.

The names for the variables are determined by the function name which receives the expres-

sion being abbreviated and must return a symbol name for it. If name is a string instead,

NewSymbol[name, 0] is taken as naming function, i.e. the variable names will be name1,

name2, etc. The numbering is consecutive across ToVars calls but can be reset by assign-

ing SymbolNumber[name] = 0.

For example, PrepareExpr[exprlist, MakeTmp -> ToVars[LoopIntegral[__],Head]] in-

troduces variables for all loop integrals in exprlist, with names like B0i1, B0i2, etc.

PaVeIntegral a pattern matching the head of all one-loop

Passarino–Veltman integrals (A0i, B0i, etc.)

CutIntegral a pattern matching the head of all one-loop OPP

integrals (Acut, Bcut, etc.)

LoopIntegral the union of PaVeIntegral and CutIntegral

92 7 LOW-LEVEL FUNCTIONS FOR CODE OUTPUT

SplitSums[expr] split expr into a list of expressions such that index

summations apply to the whole of each part

ToDoLoops[list] categorize list into patches that must be summed

over the same set of indices

DoLoop[expr, ind] a do-loop of expr over the indices ind

SplitSums[expr] splits expr into a list of expressions such that index sums (marked by

SumOver) always apply to the whole of each part. SplitSums[expr,wrap] applies wrap to

the coefficients of the SumOver.

ToDoLoops[list, ifunc] splits list into patches which must be summed over the same set of

indices. ifunc is an optional argument: ifunc[expr] must return the indices occurring in expr.

DoLoop[ind, expr] is a symbol introduced by ToDoLoops indicating that expr is to be summed

over the set of indices ind.

ToIndexIf[expr] turn the IndexDelta and IndexDiff in expr into

IndexIf

IndexIf[cond, a, b] same as If[cond, a, b] except that the expressions a

and b are not held unevaluated

IndexDelta[i, j] Kronecker’s δij

IndexDiff[i, j] 1 − δij

MapIf[f, expr] maps f over the expr except for the conditional parts

of an IndexIf

ToIndexIf[expr] converts all IndexDelta and IndexDiff objects in expr to IndexIf, which

will be written out as if-statements in the generated code. ToIndexIf[expr, patt] operates

only on indices matching patt.

IndexIf[cond, a, b] is the same as If[cond, a, b] except that expressions a and b are not

held unevaluated. IndexIf[cond, a] is equivalent to IndexIf[cond, a, 0], i.e. the “else” part

defaults to 0. Several conditions can be combined as IndexIf[cond1, a1, cond2, a2, . . .],

which is equivalent to IndexIf[cond1, a1, IndexIf[cond2, a2, . . .]]. Despite its name, the

statement is not restricted to index nor to integer comparisons. It is furthermore written out

as a regular if statement, i.e.

if(cond) then

a

else

b

endif

7.3 Variable lists and Abbreviations 93

IndexDelta[i, j] is Kronecker’s delta δij.

IndexDiff[i, j] is 1 − δij.

MapIf[f, expr] is equivalent to Map except that it does not modify the conditional parts if

expr is an IndexIf.

BlockSplit[var-> expr] split expr into subexpressions with leaf count less

than $BlockSize

FileSplit[exprlist,mod,writemod,writeall]

split exprlist into batches with leaf count less than

$FileSize, call writemod to write a each module to

file and finally writeall to generate a ‘master

subroutine’ which invokes the modules

ToArray[s] take the symbol s apart into letters and digits, e.g.

X123→ X[123]

Renumber[expr, v1, v2, . . .] renumber all v1[n], v2[n], . . . in expr

MaxDims[args] find the maximum indices of all functions in args

$BlockSize the size of each block for BlockSplit

$FileSize the size of each file for FileSplit

BlockSplit[var-> expr] tries to split the calculation of expr into subexpressions each of

which has a leaf count less than $BlockSize.

FileSplit[exprlist,mod,writemod,writeall] splits exprlist into batches with leaf count less

than $FileSize. If there is only one batch, writemod[batch,mod] is invoked to write it to file.

Otherwise, writemod[batch,modN] is invoked on each batch, where modN is mod suffixed by

a running number, and in the end writeall[mod, res] is called, where res is the list of writemod

return values. The optional writeall function can be used e.g. to write out a master subroutine

which invokes the individual modules. If mod is given as a dot product name.delim, the

delimiter is used to separate the N suffix. For example, "foo"."_" will evaluate to "foo" for

a single file and to "foo_1", "foo_2" etc. for multiple files.

ToArray[s] turns the symbol s into an array reference by taking it apart into letters and

digits, e.g. Var1234 becomes Var[1234]. ToArray[expr, s1, s2,. . .] turns all occurrences of

the symbols s1NNN, s2NNN, etc. in expr into s1[NNN], s2[NNN], etc.

Renumber[expr, var1, var2, . . .] renumbers all var1[n], var2[n], . . . in expr.

MaxDims[args] returns a list of all distinct functions in args with the highest indices that

appear, e.g. MaxDims[foo[1,2], foo[2,1]] returns {foo[2,2]}.

94 7 LOW-LEVEL FUNCTIONS FOR CODE OUTPUT

7.4 Declarations

SubroutineDecl[name] the declaration for the subroutine name

VarDecl[vars, type︸ ︷︷ ︸
a

] the declaration of vars as variables of type type

VarDecl[Common[com][a]] the declaration of common block com with

individual variables a (a as above)

VarDecl[NameMap[com][a]] the declaration of common block com with an array

plus a preprocessor map of the a onto array

elements (a as above)

VarDecl[NotEmpty[a]] output only if at least one variable list in a is

non-empty

DoDecl[i, range] the declaration of a do-loop of i over range

CallDecl[subs] the invocations of subroutines subs

Dim[i] the highest value the index i takes on

DoDim[i] like Dim[i] but including indices from SumOver in

the amplitudes

Enum[names] set up names as named indices

ClearEnum[] clear Enum definitions

SubroutineDecl[name] returns a string with the declaration of the subroutine name.

VarDecl[{v1, v2, . . .}, t] returns a string with the declaration of v1, v2, . . . as variables of type

t. Any other strings are output verbatim, e.g. "#ifdef COND\n", "#endif\n".

VarDecl[Common[c][{v1, v2, . . .}, t]] declares v1, v2, . . . to be members of common block c.

VarDecl[NameMap[c][{v1, v2, . . .}, t]] works much like Common but puts only arrays into the

common block (one for each data type), together with preprocessor statements mapping the

v1, v2, . . . onto array elements.

VarDecl arguments wrapped in NotEmpty are output only if at least one of its variable lists

is non-empty.

DoDecl[i,m] returns a string containing the declaration of a loop over i from 1 to m.

DoDecl[i, a, b] returns the same for a loop from a to b. DoDecl[i] invokes Dim[i] to de-

termine the upper bound on i.

CallDecl[{sub1, sub2, ...}] returns a string with the invocations of the subroutines sub1,

sub2, . . . , taking into account possible loops indicated by DoLoop.

Dim[i] and DoDim[i] return the highest value the index i takes on, excluding (Dim) or includ-

ing (DoDim) indices found in SumOver statements of amplitudes evaluated so far. A manual

7.5 Compatibility Functions 95

assignment Dim[i] = n generates correct array dimensions for index i only. A manual assign-

ment DoDim[i]= n also generates a loop over index i.

Enum associates index names with integers, used for determining array bounds during code

generation (the index names themselves remain unchanged). The syntax is similar to that

of C’s enum, e.g. Enum[a, b, c -> 5, d] associates a → 1, b → 2, c → 5, d → 6. ClearEnum[]

removes any Enum assignments previously made.

7.5 Compatibility Functions

ToOldBRules rules to convert to the conventions for two-point

functions of LoopTools 2.2 and before

ToNewBRules rules to convert to the conventions for two-point

functions of LoopTools 2.3 or later

ToOldBRules and ToNewBRules are two sets of transformation rules that convert between the

old (B0, B1, . . .) and new (B0i[b0,b1,. . .]) conventions for two-point functions in LoopTools.

96 REFERENCES

References

[Al09] Comp. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194].

[Al14] A. Alloul, N. Christensen, C. Degrande, C. Duhr, B. Fuks Comp. Phys. Commun.

185 (2014) 2250 [arXiv:1310.1921].

[Ch79] M. Chanowitz, M. Furman, I. Hinchliffe, Nucl. Phys. B159 (1979) 225.

[Cv76] P. Cvitanovic, Phys. Rev. D14 (1976) 1536.

[dA98] F. del Aguila, A. Culatti, R. Muñoz Tapia, M. Pérez-Victoria, Nucl. Phys. B537

(1999) 561 [hep-ph/9806451].

[De93] A. Denner, Fortschr. Phys. 41 (1993) 307.

[Ha98] T. Hahn and M. Pérez-Victoria, Comp. Phys. Commun. 118 (1999) 153

[hep-ph/9807565].

[Ha00] T. Hahn, Comp. Phys. Commun. 140 (2001) 418 [hep-ph/0012260].

[Ha02] T. Hahn, Nucl. Phys. Proc. Suppl. 116 (2003) 363 [hep-ph/0210220].

[Ha04] T. Hahn, Comp. Phys. Commun. 168 (2005) 78 [hep-ph/0404043].

[Ha04a] T. Hahn, Nucl. Phys. Proc. Suppl. 135 (2004) 333 [hep-ph/0406288].

[Ha06] T. Hahn, physics/0607103.

[Ni05] C.C. Nishi, Am. J. Phys. 73 (2005) 1160 [hep-ph/0412245].

[Si79] W. Siegel, Phys. Lett. B84 (1979) 193.

[tH72] G. ’t Hooft, M. Veltman, Nucl. Phys. B44 (1972) 189.

[Ve00] J.A.M. Vermaseren, math-ph/0010025. See also http://www.nikhef.nl/~form.

[Ve96] J.A.M. Vermaseren, The use of computer algebra in QCD, in: H. Latal, W. Schweiger,

Proceedings Schladming 1996, Springer Verlag, ISBN 3-540-62478-3.

[WhBG05] M.R. Whalley, D. Bourilkov, R.C. Group, hep-ph/0508110.

http://hepforge.cedar.ac.uk/lhapdf/.

[Za03] A.F. Zarnecki, Acta Phys. Polon. B34 (2003) 2741 [hep-ex/0207021].

REFERENCES 97

Acknowledgements

FormCalc would not be able to calculate in four dimensions without the hard work of Manuel

Pérez-Victoria and his deep understanding of constrained differential renormalization.

The fermionic matrix elements would not be half as well implemented without the relentless

testing of Christian Schappacher.

Index

’t Hooft–Veltman scheme, 12

-2, 68

-3, 68

-o, 68

.submitrc, 66

$AbbPrefix, 25

$BlockSize, 93

$DebugCmd, 87

$DebugPost, 88

$DebugPre, 88

$DriversDir, 42

$DupPrefix, 88

$Editor, 13

$EditorModal, 13

$FileSize, 93

$FormAbbrDepth, 14

$LoopSquare, 30–32, 45

$MissingPoints, 83

$OptPrefix, 24

$PaintSE, 78

$PutSE, 78

$RCAmp, 78

$RCIns, 78

$RCRes, 78

$RCTop, 78

$SymbolPrefix, 85

$TmpPrefix, 88

$TreeSquare, 30–32, 45

1to2.F,.h, 42, 55

1to3.F,.h, 42

2to2.F,.h, 42, 55

2to3.F,.h, 42, 55

2to4.F,.h, 42

Abbr, 24

abbr0_cat, 51

abbr1_cat, 51

abbri_angle, 51

abbri_hel, 51

abbri_s, 51

AbbrevDo, 25

Abbreviate, 25

abbreviations, 6, 22, 29, 90

registering, 27

AbbrevSet, 25

Alfa, 21

Alfa2, 21

Alfas, 21

Alfas2, 21

All, 29, 32

analytic amplitudes, 35

antisymmetrization, 16

Antisymmetrize, 15

ApplyUnitarity, 38

Automatic, 10

bfunc.m, 42

BlockSplit, 93

Breitenlohner–Maison scheme, 12

bremsstrahlung, 79

btensor.m, 42

C code, 42

C output, 46, 84, 85

CA2, 22

CalcFeynAmp, 8, 15

CalcLevel, 10

CalcRenConst, 76

CallDecl, 94

cancellation of terms, 16

CB2, 22

CBA2, 22

CHARGEi, 55

Chiral, 11

98

INDEX 99

chirality projector, 20

Classes, 10

ClearEnum, 94

ClearProcess, 16

code generation, 42

code output, 84

CodeExpr, 85

colour indices, 19, 32

COLOURFACTOR, 56

ColourGrouping, 33

ColourME, 32

ColourSimplify, 32

Combine, 17

Common, 94

compiling, 7

generated code, 62

components, 35

configure, 42, 62

constrained differential

renormalization, 6, 10

CreateFeynAmpHook, 77

CreateTopologiesHook, 77

Creep, 38

CUBA, 62

CUHRE, 62

CutIntegral, 91

CutMax, 58

CutMin, 58

CutTools, 12

Cvitanovic algorithm, 32

CW2, 21

Data, 82

data, 42, 67

data files, 66

DataHead, 70

DataRow, 72, 82

debugging options, 13

DebugLabel, 86

DebugLine, 85

DebugLines, 86

Declarations, 86

declarations, 94

DeclareProcess, 14

DeclIf, 89

demo programs, 6

Den, 18

DenCollect, 38

denominator, 18

density matrix, 29

Deny, 26

dependences, 54

diagram generation, 7

DiagramType, 17

Dim, 94

Dimension, 10, 30, 32, 35

dimension, 22

dimensional

reduction, 6, 10

regularization, 6, 10

Dirac equation, 8

Dirac matrix, 20

DiracChain, 20

Divergence, 37

DIVONNE, 62

Dminus4, 11, 30, 35, 37

Dminus4Eps, 30, 35

DoDecl, 94

DoDim, 94

DoLoop, 92

dot product, 18

DotExpand, 15

driver program, 53

Drivers, 42

drivers, 42

DSelfEnergy, 75

e[n], 18

100 INDEX

EditCode, 10, 30, 35

Enum, 94

Eps, 18

ESOFTMAX, 56, 80

Evanescent, 10

ExceptDirac, 15

ExpandSums, 38

expansion, 13

Expensive, 86

external fermions, 28

external spinors, 11

ExtraRules, 45

FERMION, 55

fermion chain, 11

fermion traces, 8

FermionChains, 10

fermionic matrix elements, 28

FermionicQ, 17

FermionOrder, 10

FeynArts, 7

FeynRules, 43

FF, 33

FFC, 33

FieldRC, 75

Fierz transformation, 11

file handling, 84

FileHeader, 42, 45, 77

FileIncludes, 45, 77

FilePrefix, 45, 77

FileSplit, 84, 93

FileTag, 10

FinalCollect, 89

FinalFunction, 89

FinalTouch, 86

Finite, 18

FIXED, 58

Folder, 42, 45, 48, 77

FormAmp, 15

FormDot, 14

FormMat, 14

FormPre, 14

FormQC, 14

FormQF, 14

FormSub, 14

Fortran code, 42

Fortran output, 46, 84, 85

four-vector, 35

Fuse, 26

Gamma5Test, 10

Gamma5ToEps, 10

GaugeTerms, 35

generators of SU(N), 19

generic amplitude, 7

gluon indices, 32

gnuplot, 68

Gram determinant, 18

Hel[n], 29

helicity, 29

helicity matrix elements, 29

helicity reference vector, 29

HelicityME, 11, 15, 29

HornerStyle, 89

IDENTICALFACTOR, 56

IGram, 18

ImTilde, 75

index contractions, 8

IndexDelta, 92

IndexDiff, 92

IndexIf, 92

IndexType, 89

infrared divergences, 79

InsertFieldsHook, 77

InsertionPolicy, 10

insertions, 12

installation, 7

INDEX 101

integration, 56

internal definitions, 16

Invariants, 15

invariants, 15

simplification, 16

inverse Gram, 18

invoking run, 62

InvSimplify, 15

k[n], 18

Keep, 27

kinematical simplification, 12

kinematics, 16, 18

language choice, 46

leaf count, 23

left-circular polarization, 63

levels in diagrams, 7, 10

Levi-Civita tensor, 18

LIBS, 47

local terms, 8

log directory, 66

log files, 66

LogFile, 70

longitudinal polarization, 63

loop integral

symmetrized, 12

LoopIntegral, 91

LoopSquare, 30–32, 45

looptools.h, 55

Lor[n], 20

Lorentz index, 20

Lower, 58

LScalarCoeff, 75

lumi_*.F, 42

lumi_hadron.F, 55

lumi_parton.F, 55

lumi_photon.F, 55

LVectorCoeff, 75

MA02, 22

main.F,.h, 42, 53, 55

make, 62

makefile, 47, 62

makefile.in, 42

MakeTmp, 86

Mandelstam variables, 15, 19, 23

MapIf, 92

MapOnly, 38

mass shell, 15

MASSi, 55

MassDim, 22

MassDim0, 22

MassDim1, 22

MassDim2, 22

MassRC, 75

Mat, 29, 32, 33

MatFactor, 31

MB2, 21

MC2, 21

MCha2, 22

MD2, 21

ME2, 21

MG02, 22

MGl2, 22

MGp2, 22

Mh02, 22

MH2, 21

MHH2, 22

MHp2, 22

MinLeafCount, 26, 86

missing points, 83

MkDir, 84

mktm, 42

ML2, 21

MLE2, 21

MM2, 21

MmaGetComplex, 69

MmaGetComplexList, 69

102 INDEX

MmaGetInteger, 69

MmaGetIntegerList, 69

MmaGetReal, 69

MmaGetRealList, 69

MmaPutComplex, 72

MmaPutComplexList, 72

MmaPutInteger, 72

MmaPutIntegerList, 72

MmaPutReal, 72

MmaPutRealList, 72

MNeu2, 22

Model, 42

model initialization, 43

model parameters, 21

model-dependent symbols, 23

model_*.F, 42

model_mssm.F, 49, 55

model_sm.F, 49, 55

model_thdm.F, 49, 55

ModelConstIni, 49

ModelDigest, 49

ModelVarIni, 49

MomElim, 15

momenta, 18

momentum conservation, 16

MomRules, 10

MoveDepsLeft, 90

MoveDepsRight, 90

MQD2, 21

MQU2, 21

MS2, 21

MSf2, 22

MSSMSimplify, 22

MT2, 21

MU2, 21

MultiplyDiagrams, 18

MW2, 21

MZ2, 21

NameMap, 94

NArgs, 90

Neglect, 22

neglecting masses, 22

Newline, 89

NoBracket, 10, 35

NoCostly, 10

NoDebug, 85

NoExpand, 10

non-expansion of terms, 13

normalization, 15

Normalized, 15

NotEmpty, 94

novec, 46

NPID, 48

numbering of momenta, 18, 55

numerator function, 12

numerical evaluation, 6, 40

numerical parameters, 49

OffShell, 17

on-shell particles, 15

OnePassOrder, 90

OnShell, 15

OnSize, 38

open fermion chains, 8

OpenCode, 84

OPP, 12

OPP, 10

OPPQSlash, 10

Optimize, 86

OptimizeAbbr, 24

Options, 78

ordering, 11

PaintSE, 78

Pair, 18

Para, 82

ParaHead, 70

parameter scan, 63

INDEX 103

parameter space, 64

parameters, 49

Particles, 10

PARTON1,2, 48

partonic process, 47

partonic.h, 48

PaVeIntegral, 91

PaVeReduce, 10

PDG code, 48

permissions, 67

phase space, 56

PHOTON, 55

photon mass, 79

PHOTONRADIATION, 56, 80

PID, 48

pnuglot, 42, 68

polarization, 63

polarization sum, 34

polarization vector, 15, 18

PolarizationSum, 15, 34

Pool, 38

post-processing, 80

PostFunction, 10

PreFunction, 10

PrepareExpr, 85

Preprocess, 26

process definition, 55

process.h, 42, 53, 55

ProcName, 48

Profile, 14

propagator denominator, 18

PutSE, 78

rational terms, 12

RCInt, 79

RCSub, 79

ReadData, 81

ReadData.tm, 42

ReadFormDebug, 13

RealArgs, 89

RegisterAbbr, 27

registering abbreviations, 27

RegisterSubexpr, 27

regularization method, 10

RenConst, 74

renconst.h, 55, 76

renormalization constants, 42, 74, 76

options for, 78

Renumber, 93

reorder.c, 42

ResetNumbering, 86

resume, 66

RetainFile, 10, 30, 35

ReTilde, 75

right-circular polarization, 63

RScalarCoeff, 75

RuleAdd, 85

run.F, 42, 53, 55, 62

RVectorCoeff, 75

S, 19

s[n], 18, 29

SA2, 22

Samurai, 12

SB2, 22

SBA2, 22

SCALAR, 55

ScanContourPlot, 83

ScanDensityPlot, 83

ScanGraphics.m, 42

ScanPlot3D, 83

scans, 64

SEHook, 78

selecting diagrams, 17

SelfEnergy, 75

serial number, 63

SetLanguage, 46

SetNumber, 70

104 INDEX

SetupCodeDir, 42

sfx, 42, 67

short-hands, 23

Show, 58

Sij, 19

SimplifyQ2, 10

size of the amplitude, 23

SMSimplify, 21

SOFT, 80

soft-photon factor, 79

SortDen, 10

specs.h, 48

spin, 29

Spinor, 20

spinor chain, 11, 28

spinor metric, 20

Split, 56

SplitSums, 92

SplitTerms, 38

squared matrix element, 33, 42

SquaredME, 33, 51

squaredme.a, 62

SquaredME.F, 53

Step, 58

SU(N) objects, 19, 32

SUAVE, 62

SubExpr, 27

subexpressions

registering, 27

submit, 42, 66

SubroutineDecl, 94

SubroutineIncludes, 45, 77

SubstAbbr, 24

SubstSimpleAbbr, 24

SumLegs, 35

SUNN, 19

SUNT, 19, 32

SUSYTrigExpand, 22

SUSYTrigReduce, 22

SUSYTrigSimplify, 22

SW2, 21

SymbolPrefix, 45, 48, 77

T, 19

TadpoleRC, 75

TagCollect, 38

TagDiagrams, 18

TB2, 22

tensor coefficients, 12

tensor reduction, 8

test, γ5, 12

threshold, 63

Tij, 19

TimeStamp, 84

TmpType, 89

ToArray, 93

ToCode, 84

ToComponents, 36

ToDoLoops, 92

ToIndexIf, 92

ToList, 84

ToNewBRules, 95

ToOldBRules, 95

tools, 42

ToSymbol, 84

ToVars, 91

transversality, 15

Transverse, 15

TreeCoupling, 75

TreeSquare, 30–32, 45

TRIVIAL, 58

turnoff, 42, 67

Type, 89

type conversion, 84

TYPEi, 55

U, 19

UChaC, 22

ultraviolet divergences, 36

INDEX 105

Unabbr, 24

unpolarized case, 29

unpolarized particles, 63

unsquared, 35

Upper, 58

useful functions, 38

USfC, 22

util.a, 47

UV divergences, 10

UVDivergentPart, 37

UVSeries, 37

VA, 11

Var, 58

VarDecl, 94

variable lists, 90

VChaC, 22

VecSet, 36

VECTOR, 55

vector, 35

vectorization, 46, 63

VEGAS, 62

VertexFunc, 75

Weyl, 11

WeylChain, 20

WeylME, 31

WF_RENORMALIZATION, 56

WidthRC, 75

WriteExpr, 85

WriteRenConst, 42, 76

WriteSquaredME, 42

writing expressions, 85

xsection.F, 53

xsection.F,.h, 42

ZNeuC, 22

