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Restrictions

Integration is a wide field. We will concentrate here on
Riemann integrals of the form

I f :=
∫ 1

0
ddx f (~x ) w(~x ) .

The Weight Function w(~x ) is generally known analytically and
is used to absorb characteristics of the integrand which are
difficult to treat otherwise, e.g. peaks or oscillatory behaviour.

For the purposes of numerical integration, we assume that
f (~x ) is given as a function/subroutine that can be sampled at

arbitrary points ~xi ∈ [0, 1]d.
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Quadrature Formulas

Task: Find a Quadrature Formula

Qn f :=
n

∑
i=1

wi f (~xi)

with Nodes (sampling points) ~xi and Weights wi.

Qn f should approximate I f for a large class of functions with
as small an Error En f as possible:

I f = Qn f + En f , En f “small.”

But: For a given Qn, it is always possible to construct an f
such that En f becomes arbitrarily large!
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Terminology

A Quadrature Rule is the vector of nodes and weights,

Rn =

{(

~x1

w1

)

, . . . ,

(

~xn

wn

)}

and of course completely specifies Qn.

• Open Rule = all ~xi lie strictly inside the unit hypercube.

• Closed Rule = some ~xi lie on the boundary.

• Positive Rule = all wi are positive.
(Weights with alternating sign are generally considered inferior

because numerical cancellations may occur when adding up.)
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Interpolatory Formulas (1 D)

Idea: Approximate f by a polynomial p(n−1) and integrate the
latter. Works as far as f is well approximated by polynomials.

We impose that p(n−1) interpolates f at n given points xi:

p(n−1)(xi)
!
= f (xi) , i = 1, . . . , n .

The polynomial thus specified is unique and can explicitly be
given in terms of Lagrange Polynomials `n−1,i:

p(n−1)(x) =

n

∑
i=1

f (xi)`
(n−1)
i (x) , where `(n−1)

i (x) = ∏
j 6=i

x − x j

xi − x j
.

By construction, `(n−1)
i (x j) = δi j .
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Interpolatory Formulas (1 D)

Weights:

I p(n−1)
=

∫ 1

0
dx w(x) p(n−1)(x)

=

n

∑
i=1

f (xi)
∫ 1

0
dx w(x) `(n−1)

i (x)
︸ ︷︷ ︸

wi

.

From the practical point of view, the weight function w(x)
must be chosen such that these integrals can be computed.

The Degree of Qn is the degree of the highest polynomial
integrated exactly by Qn.
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Newton–Cotes (Rectangle) Rules (1 D)

The simplest case: take equidistant xi.
For w(x) = 1 the lowest-order rules are:

Open rules: xi =
i

n+1 , e.g.

Q1 f = f ( 1
2 ) ,

Q2 f =
1
2

(
f ( 1

3 ) + f ( 2
3 )
)
,

Q3 f =
1
3

(
2 f ( 1

4 ) − f ( 1
2 ) + 2 f ( 3

4 )
)
.

Closed rules: xi =
i−1
n−1 , e.g.

Q2 f =
1
2

(
f (0) + f (1)

)
,

Q3 f =
1
6

(
f (0) + 4 f ( 1

2 ) + f (1)
)
,

Q4 f =
1
8

(
f (0)+3 f ( 1

3 )+3 f ( 2
3 )+ f (1)

)
.

By construction, deg Qn > n − 1, but cannot generally be
expected to be larger than n − 1 because the xi are prescribed
and only the n wi have been determined.

The Newton–Cotes rules by themselves are not nearly as
powerful as the Gauss rules, but they have the advantage
that they can be compounded easily, e.g. in Romberg Rules.
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Gauss Rules (1 D)

Choose the xi such that Qn has the highest possible degree.
With 2n degrees of freedom (n xi and n wi), we ought to
achieve deg Qn = 2n − 1.

By Euclid’s GCD algorithm we write

p(2n−1)(x) = q(n)(x) r(n−1)(x) + s(n−1)(x) , q(n)(x) =

n

∏
i=1

(x − xi)

I p(2n−1)
=

∫ 1

0
dx w(x) q(n)(x) r(n−1)(x) +

∫ 1

0
dx w(x) s(n−1)(x)

=

n

∑
i=1

wi q(n)(xi)
︸ ︷︷ ︸

=0

r(n−1)(xi) +

n

∑
i=1

wi s(n−1)(xi) + En p(2n−1)

If the boxed term were zero, the error term would vanish!
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Gauss Rules (1 D)

∫ 1

0
dx w(x) q(n)(x) r(n−1)(x) =

〈q(n) |r(n−1)〉 = 0 ⇔ q(n) ⊥ r(n−1)

Choose Orthogonal Polynomials for the q(n), then

r(n−1)
=

n−1

∑
i=0

〈q(i) |r(n−1)〉 q(i) and 〈q(n) |r(n−1)〉 = 0

because 〈q(n) |q(i<n)〉 = 0 .

Since q(n)(x) = ∏n
i=1(x − xi), the xi are just the zeros of the

orthogonal polynomials q(n) !
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Gauss Rules (1 D)

Gauss rules for particular weight functions have special
names, hinting at the orthogonal polynomials used:

w(x) = 1 Gauss–Legendre Rules

w(x) = 1/
√

1 − x2 Gauss–Chebychev Rules

w(x) = xαe−x Gauss–Laguerre Rules

w(x) = e−x2

Gauss–Hermite Rules

w(x) = (1 − x)α(1 + x)β Gauss–Jacobi Rules
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Error Estimate and Embedded Rules (1 D)

So far we have no error estimate for our integration rule.
Idea: Compare the results of two rules, Qn and Qn+m.
Use Embedded Rules with {xi}n

i=1 ⊂ {xi}n+m
i=1 for economy.

But: e.g. Gauss rules of different n have no common xi.

Seek to add new points xn+1, . . . , xn+m such that Qn+m is
exact for polynomial of maximum degree expectable from #df,

p(n+2m−1). This leads to
∫ 1

0
dx w(x) v(n)(x) q(m)(x) r(m−1)(x) = 0

with v(n)(x) = ∏n
i=1(x − xi) , q(m)(x) = ∏m

i=1(x − xn+i) .

Not all w(x) have solutions since a scalar product with weight

function w(x) v(n)(x) cannot in general be defined.
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Embedded Rules and Null Rules

Some common Embedded Rules in d = 1 are:

• Gauss–Kronrod Rules add one point between every two
points of a Gauss rule Rn so that Rn ⊂ Rn+n+1, e.g.

0 1

• Patterson Rules add points on top of the Gauss–Kronrod
rules, e.g. there exists a set of rules
R1 ⊂ R3 ⊂ R5 ⊂ R7 ⊂ R15 ⊂ R31 ⊂ R63 ⊂ R127 ⊂ R255.

A Null Rule Nm is associated with an integration rule Qn

(usually m < n) and is engineered to give zero for all
functions that are integrated exactly by Qn.

Nm measures the “higher terms” of the integrand that are not
exactly integrated by Qn and is also used for error estimation.
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Adaptive Algorithms

With an error estimate available, adaptiveness can easily be
implemented:

1. Integrate the entire region: Itot ± Etot.

2. while Etot > max(εrel Itot, εabs)

3. Find the region r with the largest error.

4. Bisect (or otherwise cut up) r.

5. Integrate each subregion of r separately.

6. Itot = ∑ Ii, Etot =

√

∑ E2
i .

7. end while

Examples: QUADPACK’s QAG, CUBA’s Cuhre, Suave.
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Extrapolation

Extrapolation can be used to accelerate convergence if the
functional behaviour of the error term is known.

Example: for the Newton–Cotes formulas the error can be
shown to vary with the spacing h of the nodes as

Qn f − I f = c2h2
+ c4h4

+ . . . , h =
1

n
.

Idea: Compute Qn f for different h and extrapolate to h = 0.
Use Richardson’s Extrapolation to eliminate k powers of h:

Tk
m :=

4kTk−1
m+1 − Tk−1

m

4k − 1
, T0

m := Q2m−1 f .

T0
1 ↘

T0
2 → T1

1↘ ↘
T0

3 → T1
2 → T2

1↘ ↘.
.
.

. . .

These are known as Romberg Formulas.
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Curse of Dimension

Imagine computing the volume of the d-dim.
sphere Sd by integrating its characteristic func-
tion χ = θ(1 − ‖x‖2) inside the surrounding
hypercube Cd = [−1, 1]d.

χ = 1

χ = 0

The following table gives the ratio of the volumes:

d 2 5 10 50 100

Vol Sd

Vol Cd
.785 .164 .0025 1.5 × 10−28 1.9 × 10−70

This ratio can in a sense be thought of as the chance that a
general-purpose integrator will find the sphere at all!
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Product Formulas

Easiest method: Iterate one-dimensional rules, e.g.

∫ 1

0
d3x f (~x ) =

nx

∑
i=1

ny

∑
j=1

nz

∑
k=1

w(x)
i w

(y)
j w(z)

k f (x(x)
i , x

(y)
j , x(z)

k ) .

But: the number of samples increases as N = ∏d
i=1 ni ∼ nd.

Consider e.g. the Newton–Cotes rules, where the error term is
O(h2) = O(n−2). Convergence is thus:

Qn f − I f = O(N−2/d) .

Even for moderate dimensions (say d & 5), this convergence
rate is usually too slow to be useful.
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Construction of Polynomial Rules

Select orthogonal basis of functions {b1, . . . , bm} (usually
monomials) with which most f can (hopefully) be
approximated sufficiently and impose that each bi be
integrated exactly by Qn:

I bi
!
= Qnbi ⇔

n

∑
k=1

wkbi(~xk) =

∫ 1

0
ddx w(~x ) bi(~x ) .

These are m Moment Equations for nd + n unknowns ~xi, wi,
and a formidable, in general nonlinear, system of equations.

Additional assumptions (e.g. Symmetries) are often necessary
to solve this system. If a unique solution exists, Qn is an
Interpolatory Rule.

Example: the Genz–Malik rules used in CUBA’s Cuhre.

T. Hahn, Numerical Integration – p.17



Monte Carlo Methods

Idea: Interpret f as a Random Variable and estimate I f by
the Statistical Average over independent, identically

distributed samples ~xi ∈ [0, 1]d

I f ≈ Mn f =
1

n

n

∑
i=1

f (~xi) (w(~x ) = 1 here) .

The Standard Deviation is a probabilistic estimate of the
integration error:

σ(Mn f ) =

√

Mn( f 2) − (Mn f )2 .

From σ(Mn f ) =
σ( f )√

n
, convergence is Mn f − I f = O(n−1/2).

Not particularly fast, but independent of the dimension d !
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Variance Reduction

Variance Reduction = Methods for accelerating convergence.

In Importance Sampling one introduces a weight function:

I f =

∫ 1

0
ddx w(~x )

f (~x )

w(~x )
, w(~x ) > 0 , I w = 1 .

• One must be able to sample from the distribution w(~x ),

• f /w should be “smooth,” such that σw( f /w) < σ( f ),
e.g. w and f should have the same peak structure.

The ideal choice is w(~x ) = | f (~x )|/I f which has σw( f /w) = 0.

Example: Vegas uses a piecewise constant weight function
which is successively refined, thus coming closer to | f (~x )|/I f .
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Variance Reduction

Stratified Sampling works by sampling subregions. Consider:

n samples in na = n/2 samples in ra,
total region ra + rb nb = n/2 samples in rb

Integral I f ≈ Mn f I f ≈ 1
2
(Ma

n/2 f + Mb
n/2 f )

Variance σ2 f
n

1
4

(
σ2

a f
n/2

+
σ2

b f

n/2

)

=
1

2n

(
σ2

a f + σ2
b f
)
+ =

1
2n

(
σ2

a f + σ2
b f
)

1
4n

(
Ia f − Ib f

)2

The optimal reduction of variance is for na/nb = σa f /σb f .

But: splitting each dimension causes a 2d increase in regions!

Example: Miser uses Recursive Stratified Sampling.
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Variance Reduction

Importance Sampling and Stratified Sampling are
complementary:

• Importance Sampling puts most points where the
magnitude of the integrand | f | is largest,

• Stratified Sampling puts most points where the variance
of f is largest.
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Number-Theoretic Methods

The basis for the number-theoretical formulas is the
Koksma–Hlawka Inequality:

The error of every Qn f =
1
n ∑n

i=1 f (~xi) is bounded by

|Qn f − I f | 6 V( f ) D∗(~x1, . . . , ~xn) .

where V is the “Variation in the sense of Hardy and Krause”
and D∗ is the Discrepancy of the sequence ~x1, . . . , ~xn,

D∗(~x1, . . . , ~xn) = sup
r∈ [0,1]d

∣
∣
∣
∣

ν(r)

n
− Vol r

∣
∣
∣
∣
,

where ν(r) counts the ~xi that fall into r. For an Equidistributed
Sequence, ν(r) should be proportional to Vol r.
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Low-Discrepancy Sequences and Quasi-Monte Carlo

Cannot do much about V( f ), but can sample with
Low-Discrepancy Sequences a.k.a. Quasi-Random Numbers
which have discrepancies significantly below the
pseudo-random numbers used in ordinary Monte Carlo, e.g.

• Halton Sequences,

• Sobol Sequences,

• Faure Sequences.

These Quasi-Monte Carlo Methods typically achieve

convergence rates of O(logd−1 n/n) which are much better

than the O(1/
√

n) of ordinary Monte Carlo.

Example: CUBA’s Vegas and Suave use Sobol sequences.
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Comparison of Sequences

Mersenne Twister Sobol
Pseudo-Random Numbers Quasi-Random Numbers

n = 3000 n = 4000

n = 1000 n = 2000

n = 3000 n = 4000

n = 1000 n = 2000
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Lattice Methods

Lattice Methods require a periodic integrand, usually obtained
by applying a Periodizing Transformation (e.g. x → 3x2 − 2x3).
Sampling is done on an Integration Lattice L spanned by a
carefully selected integer vector ~z:

Qn f =
1

n

n−1

∑
i=0

f
(
{ i

n~z }
)
, {x} = fractional part of x .

Construction principle for ~z: knock out as many low-order
“Bragg reflections” as possible in the error term:

Qn f − I f = ∑
~k∈Zd

f̃ (~k ) Qne2πi~k·~x − f̃ (~0 ) = ∑
~k∈L⊥,~k 6=~0

f̃ (~k ) ,

where L⊥
= {~k ∈ Z

d : ~k · ~z = 0 (mod n)} is the Reciprocal
Lattice. Method: extensive computer searches.
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Summary

• Univariate Integration is pretty straightforward.
Gauss or Gauss–Kronrod/Patterson are the rules of
choice, often in an adaptive algorithm.

There are, of course, many special routines, e.g. for
oscillatory or singular integrands.

• Multivariate Integration is not at all straightforward.
Most multivariate integrators use a more or less
empirical hodge-podge of Quadrature Rules, Monte
Carlo, quasi-Monte Carlo, and Lattice Techniques,
garnished with one or more Variance Reduction Methods.

There are several “good” algorithms on the market, all of
which have their PROs and CONs, but there is in general
no “best” algorithm.
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Software

• QUADPACK, http://www.netlib.org/quadpack
Fortran. Standard for 1 D problems. Well tested. Well documented

in QUADPACK book (Springer), but book out of print, README file.

• NAG (Numerical Algorithms Group), http://www.nag.co.uk
Fortran and C. Commercial, well documented and tested.

• IMSL, http://www.imsl.com
(Intl. Math and Statistical Libraries, now Visual Numerics)

Fortran, C, C#, Java. Commercial, well documented and tested.

• CERNLIB, http://wwwinfo.cern.ch/asd/
Fortran. Somewhat aged, well documented.

• CUBA, http://www.feynarts.de/cuba, hep–ph/0404043
Fortran, C/C++, Mathematica. Quite new, well documented.
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Books

• A.R. Krommer, C.W. Ueberhuber
Computational Integration
SIAM Press, 1998.

• P.J. Davis, P. Rabinowitz
Methods of Numerical Integration, Second Edition
Academic Press, 1984.

• M. Evans, T. Swartz
Approximating Integrals via Monte Carlo and
Deterministic Methods
Oxford University Press, 2000.

• W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
Numerical Recipes, Second Edition
Cambridge University Press, 1992.
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