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The Weight Function w(x) is generally known analytically and
is used to absorb characteristics of the integrand which are
difficult to treat otherwise, e.g. peaks or oscillatory behaviour.

For the purposes of numerical integration, we assume that
f(x) is given as a function/subroutine that can be sampled at

arbitrary points x; < [0, 1]
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with and Weights w;.

Q.. f should approximate I/ for a large class of functions with
as small an as possible:

If =Qnf +

But: For a given Q,, it is always possible to construct an f
such that E, f becomes arbitrarily large!
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and of course completely specifies Q,,.
o Open Rule = all  lie strictly inside the unit hypercube.
o Closed Rule = some ' lie on the boundary.

o Positive Rule = all w; are positive.
(Weights with alternating sign are generally considered inferior
because numerical cancellations may occur when adding up.)
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The polynomial thus specified is unique and can explicitly be

given in terms of Lagrange Polynomials ¢,,_ ;:
PP = fO)E" P (x), where "D (x) =
=1

By construction, /" (x ) = §;;.

x—x]-

|_|XZ'—X'

i j
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From the practical point of view, the weight function w(x)
must be chosen such that these integrals can be computed.

The Degree of Q,, is the degree of the highest polynomial
integrated exactly by Q..
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Q> f

;(fG) +f(3), Qsf = L(f(0) +4f(2) + £(1)),
Qzf % %

RfD-fQ+2f3).  Quf =5(FO+3f(3)+3f(5) +f)).

By construction, deg Q,, > n — 1, but cannot generally be
expected to be larger than n» — 1 because the ' are prescribed
and only the n w; have been determined.

The Newton-Cotes rules by themselves are not nearly as :
powerful as the Gauss rules, but they have the advantage .
|

that they can be compounded easily, e.g. in Romberg Rules.
| H B E N
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PP D) = () A 50D, ) = [ )
1=1

1
[pe D = | [ drva( 0 )

n

=1 T

If the boxed term were zero, the error term would vanish!

n
=y w; ") ) + Y wis™ () +
=

+ /o 1 dx w(x) sV (x)
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n—1
=1 _ Z <q(i)|r(n—1)>q(i) and (g (n)‘r(n 1)> —
=

0
0.

because (7| ") =

Since 7"(x) = [1"_,(x — 1)), the x, are just the zeros of the
orthogonal polynomials 7"
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w(x) = x%e™* Gauss-Laguerre Rules

2

w(x) =e ¥ Gauss-Hermite Rules

w(x) = (1 — x)%(1 +x)° Gauss-Jacobi Rules
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Seektoaddnewpoints = suchthat Q, , is
exact for polynomial of maximum degree expectable from #df,
p12m=1) This leads to

/ : dx w(x) v (x) g™ (x) ™ D(x) = 0
0
with v(n)(x) — Hzr'lzl(x i xi) y q(m)(x) — H;'nzl(x _ anri) :

Not all w(x) have solutions since a scalar product with weight
function w(x) v\ (x) cannot in general be defined. _
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0 1

e Patterson Rules add points on top of the Gauss-Kronrod
rules, e.g. there exists a set of rules
R1 - Rg - R5 C R7 C R15 C R31 - R63 C R127 C R255.

A Null Rule N, is associated with an integration rule Q,,
(usually m < n) and is engineered to give zero for all
functions that are integrated exactly by Q,,.

N,, measures the “higher terms” of the integrand that are not

exactly integrated by Q,, and is also used for error estimation.
H B EH BN
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3 Find the region » with the largest error.
4. Bisect (or otherwise cut up) r.

5. Integrate each subregion of r separately.
6

[A

Lot = 3 Liy Evot =1/ EZ.

end while

Examples: QuAaoPrAck’s QAG, Cusa’s Cuhre, Suave.
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an—lf:C2h2-|-C4h4-|-..., h:%

Idea: Compute Q,, f for different /1 and extrapolate to /1 = (.
Use Richardson’s Extrapolation to eliminate k powers of /i:

0
gkTk=1 _ k-1 0\
T = "Hl;l T T):=Quf. T2 \ N
4k — 1 \ T} < Ti

These are known as Romberg Formulas. - I
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The following table gives the ratio of the volumes:

d 2 5 10 50 100
Vol Sq 785 |.164 | .0025 | 1.5 x107%® | 1.9 x 107"
Vol Cd

This ratio can in a sense be thought of as the chance that a
general-purpose integrator will find the sphere at all!
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But: the number of samples increases as N = 17, n; ~ n“,

Consider e.g. the Newton-Cotes rules, where the error term is
O(h?) = O(n—?). Convergence is thus:

Q.f —1f = O(N_Z/d) -

Even for moderate dimensions (say d = 5), this convergence
rate is usually too slow to be useful.
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[ 2Qb & Y wb( )= [ dra@bE).
k=1
These are m Moment Equations for nd + n unknowns =, w;,
and a formidable, in general nonlinear, system of equations.

Additional assumptions (e.g. Symmetries) are often necessary

to solve this system. If a unique solution exists, Q,, is an
Interpolatory Rule.

Example: the Genz-Malik rules used in CusA’s Cuhre.
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N5

The Standard Deviation is a probabilistic estimate of the
integration error:

(M, f) = /Mu(f2) — (M, f)2

From c(M,,f) = "yi), convergence is M, f — If = O(n~1/2),
Not particularly fast, but independent of the dimension !

| H B B B
T. Hahn, Numerical Integratio

n-p.18



0 w\X

e One must be able to sample from the distribution w(x),

e f/w should be “smooth,” such that o, (f /w) < o(f),
e.g. w and f should have the same peak structure.

The ideal choice is w(x) = |f(¥)|/1f which has o,,(f/w) = 0.

Example: Vegas uses a piecewise constant weight function
which is successively refined, thus coming closer to |f(x')|/If.
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Variance | =1 : (n—/z
= 5 (0af +0uf) + | = 5 (0af + 04 f)

L(Lf - Lf)’

The optimal reduction of variance is for 1, /n, = o,f /o, f.
But: splitting each dimension causes a 2¢ increase in regions!

Example: Miser uses Recursive Stratified Sampling.
| B B B
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of f is largest.
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where V is the “Variation in the sense of Hardy and Krause”

and D* is the Discrepancy of the sequence x7, ..., X,
D*(x1,...,x;) = sup L)—Volr :
re[0,1]4 n

where v (7) counts the x; that fall into ». For an Equidistributed
Sequence, v (r) should be proportional to Vol r.

T. Hahn, Numerical Integration —p.22



e Halton Sequences,
e Sobol Sequences,
e Faure Sequences.

These Quasi-Monte Carlo Methods typically achieve

convergence rates of (’)(logd_1 n/n) which are much better
than the O(1/+/n) of ordinary Monte Carlo.

Example: CusA’s Vegas and Suave use Sobol sequences.
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n—1
Q,f = % Z f({%Z}) , {x} = fractional part of x .
=0

Construction principle for z: knock out as many low-order
“Bragg reflections” as possible in the error term:

Q.f -1f = 5 f(K)Que - f0)= S fK),
kezd keLL k40

where L+ = {E eZ?:k-Z=0 (mod n)} is the Reciprocal
Lattice. Method: extensive computer searches.
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oscillatory or singular integrands.

Multivariate Integration is not at all straightforward.
Most multivariate integrators use a more or less
empirical hodge-podge of Quadrature Rules, Monte
Carlo, quasi-Monte Carlo, and Lattice Techniques,
garnished with one or more Variance Reduction Methods.

There are several “good” algorithms on the market, all of
which have their PROs and CONs, but there is in general
no “best” algorithm.
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e IMSL, http://www.imsl.com
(Intl. Math and Statistical Libraries, now Visual Numerics)
Fortran, C, C#, Java. Commercial, well documented and tested.

e CERNLIB, http://wwwinfo.cern.ch/asd/
Fortran. Somewhat aged, well documented.

o CusA, http://www.feynarts.de/cuba, hep-ph/0404043
Fortran, C/C++, Mathematica. Quite new, well documented.
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Methods of Numerical Integration, Second Edition
Academic Press, 1984.

M. Evans, T. Swartz

Approximating Integrals via Monte Carlo and
Deterministic Methods

Oxford University Press, 2000.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P Flannery
Numerical Recipes, Second Edition
Cambridge University Press, 1992.
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