Numeric Programming Examples

Thomas Hahn

Max-Planck-Institut für Physik München

https://feynarts.de/lectures/num.pdf https://feynarts.de/lectures/num.tar.gz

- Mixing Fortran and C
- MathLink Programming
- Floating-point issues
- Alignment and Caching
- "Find the Mistake" Quiz

Why Fortran? Why C/C++?

- Around for longer than many modern languages: Fortran 1957, C 1972 Perl 1987, Python 1991, Java 1995, Ruby 1995
- Both widely used, e.g. C in the Linux Kernel.
- Good and free compilers available.
- Being the language of Unix, C is usually the lowest common denominator, i.e. has fewest linking issues.
- Object orientation through Fortran 90/2003, C++. (Introduces name mangling issues, though.)
- Most Fortran compilers add an underscore to all symbols.
- Fortran passes all arguments by reference.
- Avoid calling functions (use subroutines) as handling of the return value is compiler dependent.
- 'Strings' are character arrays in Fortran and not null-terminated. For every character array the length is passed as an invisible int at the end of the argument list.
- Common blocks correspond to global structs, e.g.

```
double precision a, b
double a, b;
    } abc_;
```

- Fortran's (and C99's) double complex maps onto struct \{ double re, im; \}.

MathLink is Mathematica's API to interface with C and $\mathrm{C}_{++ \text {. }}$ J/Link offers similar functionality for Java.

A MathLink program consists of three parts:

a) Declaration Section
:Begin:
:Function: a0
:Pattern: A0 [m_, opt__Rule]
:Arguments: \{N[m], N[Delta /. \{opt\} /. Options [AO]],
N[Mudim /. \{opt\} /. Options [AO]]\}
:ArgumentTypes: \{Real, Real, Real\}
:ReturnType: Real
: End:
:Evaluate: Options [AO] = \{Delta -> 0, Mudim -> 1\}

b) C code implementing the exported functions

```
#include "mathlink.h"
static double aO(const double m,
        const double delta, const double mudim) {
    return m*(1 - log(m/mudim) + delta);
}
```

c) Boilerplate main function

```
int main(int argc, char **argv) {
    return MLMain(argc, argv);
}
```

Compile with mcc instead of cc. Load in Mathematica with Install["program"].

For even more details see arXiva1107.4379.

Floating-point numbers are these days always represented internally according to IEEE 754:

- $s=$ sign bit,
- $\exp =$ (biased) $\operatorname{exponent,~}$
- mantissa $=($ normalized $)$ mantissa, i.e. implicit $M S B=1$.

Special values	exponent	mantissa
Zero	0	0
Denormalized numbers	0	non-zero
Infinities	max	0
NaNs	\max	non-zero

Bits	exponent	mantissa
Single precision	$\mathbf{8}$	23
Double precision	11	52

About the only operation that can seriously cost precision in floating-point arithmetic is subtraction of two similar numbers,

$$
a-b, \quad|a-b| \ll|a|+|b| .
$$

IEEE 754 codifies the collected experience with many floating-point implementations over several decades.

Double precision is sufficient to measure the thickness d of a pencil to two digits by subtracting the distance $\ell^{\prime \prime}=$ earth + pencil-sun from the distance $\ell=$ earth-sun:

Numerical example for loss of precision:

$$
\Delta p=p_{0}-|\vec{p}|=\sqrt{p^{2}+m^{2}}-p
$$

p	m	$\Delta p^{\text {double precision }}$	$\Delta p^{\text {exoct }}$
10^{3}	1	$.499999875046342 \cdot 10^{-3}$	$.499999875000062 \cdot 10^{-3}$
10^{6}	1	$.500003807246685 \cdot 10^{-6}$	$.499999999999875 \cdot 10^{-6}$
10^{9}	1	0	$.500000000000000 \cdot 10^{-9}$
10^{12}	1	0	$.500000000000000 \cdot 10^{-12}$
10^{15}	1	0	$.500000000000000 \cdot 10^{-15}$

Always substitute $a^{2}-b^{2} \rightarrow(a-b)(a+b)$.
$a^{2}-b^{2}$ loses twice as many digits as $(a-b)(a+b)$!
Besides: $a^{2}-b^{2}=2$ mul, 1 add, $(a-b)(a+b)=1$ mul, 2 add.
Variants on this theme:

- On-shell momentum p :

$$
p_{0}-p=\left(p_{0}-p\right) \frac{p_{0}+p}{p_{0}+p}=\frac{m^{2}}{p_{0}+p}
$$

- Trigonometry in extreme forward/backward direction:

$$
1-\cos x=(1-\cos x) \frac{1+\cos x}{1+\cos x}=\frac{\sin ^{2} x}{1+\cos x}
$$

- Polarization vectors:

$$
1-e_{z}=\left(1-e_{z}\right) \frac{1+e_{z}}{1+e_{z}}=\frac{e_{x}^{2}+e_{y}^{2}}{1+e_{z}}
$$

The CPU generally accesses memory in units of its data bus width, i.e. 4 bytes at a time on a 32 -bit machine, 8 bytes at a times on a 64-bit machine.

If a variable is improperly aligned in memory, the CPU needs an extra fetch cycle to read the item! This significantly degrades performance.

Compilers generally align 'loose' variables on proper boundaries. Similarly, functions like malloc return memory addresses properly aligned for any type of data.
Some languages (e.g. C) allow padding inside structures:

Some languages (e.g. Fortran) do not allow padding, thus the programmer can construct misaligned variables:

```
character*1 c
double precision r
common /test/ c, r
```


RAM (Random-Access Memory) is in fact not accessed randomly. Modern CPUs have two levels of cache 'on top' of the regular RAM. Cache is much faster than DRAM,
$t_{\text {cache }}: t_{\text {DRAM }} \approx t_{\text {DRAM }}: t_{\text {disk }}$.

Accessing memory sequentially is typically (much) faster than "hopping around."

Due to the cache, accessing a matrix is not arbitrary.

- Fortran: column-major storage, Matrix = array of column vectors: $A_{11} \rightarrow A_{21} \rightarrow A_{31} \rightarrow \ldots$ (first index runs fastest)
- C: row-major storage,

Matrix = array of row vectors:

$A_{11} \rightarrow A_{12} \rightarrow A_{13} \rightarrow \ldots \quad$ (last index runs fastest)

Naive:

$$
\begin{aligned}
& \text { do } i=1, n \\
& \text { do } j=1, n \\
& \quad \text { sum }=\operatorname{sum}+A(i, j) \\
& \text { enddo } \\
& \text { enddo }
\end{aligned}
$$

Better:

$$
\begin{aligned}
& \text { do } j=1, n \\
& \text { do } i=1, n \\
& \quad \text { sum }=\operatorname{sum}+A(i, j) \\
& \text { enddo } \\
& \text { enddo }
\end{aligned}
$$

In HEP we are (typically) blessed with highly parallelizable problems. For example, computing a cross-section for different point in phase or parameter space.
Such computations are "embarrassingly parallel" - each point can be calculated independently.
How to distribute the iterations automatically without rewriting your program?

Solution: Introduce a serial number

```
subroutine Computation( range )
integer serial
serial = 0
parameter loop
    serial = serial + 1
    if( serial }\ddagger\mathrm{ range ) goto 1
    (do the computation)
enddo
end
```

1

Make range $\stackrel{\text { e.g. }}{=} i, N$ accessible from the command line (getarg) or environment variable (getenv).
Distribution on N machines is now simple:

- Send serial numbers $1, N+1,2 N+1, \ldots$ to machine 1 ,
- Send serial numbers $2, N+2,2 N+2, \ldots$ to machine 2, etc.

Simple parallelization using only OS functions can be done using fork and wait.
fork starts new process, returns 0 to child, child-pid to parent. Unlike pthread_create, fork creates a completely independent process image. Works even in Fortran.

Linux uses copy-on-write, i.e. memory pages are kept common until either parent or child writes on them.
No simple way to communicate back results to parent.

Can you spot what is wrong, undesirable, or potentially dangerous with the following code snippet?

```
inline double KineticEnergy(const double m,
    const double v) {
    return 1/2*m*v*v;
}
```


Can you spot what is wrong, undesirable, or potentially dangerous with the following code snippet?

program my_huge_program double precision radius
print *, "Please enter the radius:"
read(*,*) radius
radius $=$ radius*2*pi

Can you spot what is wrong, undesirable, or potentially dangerous with the following code snippet?

```
subroutine foo(i)
integer i
i = 2*i + 1
end
call foo(4711)
```


Can you spot what is wrong, undesirable, or potentially dangerous with the following code snippet?

```
#define map(a) 1-a
#define scale(x) 3*x+1
scaled_x = map(scale(x))
```


Can you spot what is wrong, undesirable, or potentially dangerous with the following code snippet?

block data my_data_ini
double precision half, quarter
common /constants/ half, quarter data half /1/2D0/ data quarter /1/4D0/ end

Can you spot what is wrong, undesirable, or potentially dangerous with the following code snippet?

double precision x
character*1 id
double complex phase
common /mydata/ x, id, phase

Can you spot what is wrong, undesirable, or potentially dangerous with the following code snippet?

subroutine foo(x) double precision x print *, x end

call foo(7.2)

Can you spot what is wrong, undesirable, or potentially dangerous with the following code snippet?

```
program compute_sum
double precision x(5), sum
integer i
data x /1D40, 4.71D0, -2.5D40, 200D-2, 1.5D40/
sum = 0
do i = 1, 5
    sum = sum + x(i)
enddo
print *, sum
end
```

Find an implementation of an extended-precision data type for real numbers using two double-precision numbers, as in:

$$
\begin{array}{|l|l|}
\hline \text { high part }(\text { real } * 8) & \text { low part (real } * 8) \\
\hline
\end{array}
$$

(This is of course not quite the same as quadruple precision.)
Task: program the addition and multiplication operations for such a kind of extended-precision number. The output of each operation should be normalized in the sense that the high part represents the full result to the extent of double precision, e.g. $(10,10)$ becomes $(20,0)$ when normalized.

https://feynarts.de/lectures/num.pdf
https://feynarts.de/lectures/num.tar.gz

