
Introduction to Mathematica and FORM

Thomas Hahn

Max-Planck-Institut für Physik
München

https://feynarts.de/lectures/mmaform.pdf

https://feynarts.de/lectures/mmaform.tar.gz

T. Hahn, Introduction to Mathematica and FORM – p.1

Computer Algebra Systems

• Commercial systems: Mathematica, Maple,
Matlab/MuPAD, MathCad, Reduce, Derive . . .

• Free systems: FORM, Sage, GiNaC, Maxima, Axiom,
Cadabra, Fermat, GAP, Singular, . . .

• Generic systems: Mathematica, Maple, Matlab/MuPAD,
Sage, Maxima, MathCad, Reduce, Axiom, GiNaC . . .

• Specialized systems: Cadabra, Singular, Magma, CoCoA,
GAP . . .

• Many more . . .
https://fachgruppe-computeralgebra.de/systeme

T. Hahn, Introduction to Mathematica and FORM – p.2

Mathematica vs. FORM

Mathematica

• Much built-in
knowledge,

• ‘Big and slow’ (esp. on
large problems),

• Very general,

• GUI, add-on packages . . .

FORM

• Limited mathematical knowledge,

• ‘Small and fast’ (also on large
problems),

• Optimized for certain classes of
problems,

• Batch program (edit–run cycle).

T. Hahn, Introduction to Mathematica and FORM – p.3

Mathematica

T. Hahn, Introduction to Mathematica and FORM – p.4

Mathematica Components

“Mathematica”

mathematica

Frontend
(GUI)

math

Kernel
(Computation)

MathLink

https://feynarts.de/lectures/intro_math.pdf

T. Hahn, Introduction to Mathematica and FORM – p.5

Why I don’t like the Frontend (much)

FRONTEND:

© Nice formatting

© Documentation

© Ease of use

§ No obvious relation
between screen and
definitions

§ Always interactive

§ Slow startup

KERNEL:

§ Text interface

§ No pretty-printing

© 1-to-1 relation to
definitions

© Interactive and
non-interactive

© Scriptable

© Fast startup

T. Hahn, Introduction to Mathematica and FORM – p.6

Expert Systems

In technical terms, Mathematica is an Expert System.
Knowledge is added in form of Transformation Rules.
An expression is transformed until no more rules apply.

Example:

myAbs[x_] := x /; NonNegative[x]

myAbs[x_] := -x /; Negative[x]

We get:
myAbs[3] ☞ 3

myAbs[-5] ☞ 5

myAbs[2 + 3 I] ☞ myAbs[2 + 3 I]

— no rule for complex arguments so far

myAbs[x] ☞ myAbs[x]

— no match either

T. Hahn, Introduction to Mathematica and FORM – p.7

Immediate and Delayed Assignment

Transformations can either be

• added “permanently” in form of Definitions,

norm[vec_] := Sqrt[vec . vec]

norm[{1, 0, 2}] ☞ Sqrt[5]

• applied once using Rules:

a + b + c /. a -> 2 c ☞ b + 3 c

Transformations can be Immediate or Delayed. Consider:

{r, r} /. r -> Random[] ☞ {0.823919, 0.823919}

{r, r} /. r :> Random[] ☞ {0.356028, 0.100983}

Mathematica is one of those programs, like TEX, where you wish you’d gotten a US keyboard for all those braces and brackets.

T. Hahn, Introduction to Mathematica and FORM – p.8

Almost everything is a List

All Mathematica objects are either Atomic, e.g.

Head[133] ☞ Integer

Head[a] ☞ Symbol

or (generalized) Lists with a Head and Elements:

expr = a + b

FullForm[expr] ☞ Plus[a, b]

Head[expr] ☞ Plus

expr[[0]] ☞ Plus — same as Head[expr]

expr[[1]] ☞ a

expr[[2]] ☞ b

T. Hahn, Introduction to Mathematica and FORM – p.9

The Pillars of Mathematica

Li
st
-o
ri
en

te
d
P
ro
g
ra
m
m
in
g

P
a
tt
er
n
M
a
tc
h
in
g

GUI,
math/graphics functions, . . .

T. Hahn, Introduction to Mathematica and FORM – p.10

List-oriented Programming

Using Mathematica’s list-oriented commands is almost always
of advantage in both speed and elegance.

Consider:

tab = Table[Random[], {10^7}];

test1 := Block[{sum = 0},

Do[sum += tab[[i]], {i, Length[tab]}];

sum]

test2 := Apply[Plus, tab]

Here are the timings:

Timing[test1][[1]] ☞ 8.29 Second

Timing[test2][[1]] ☞ 1.75 Second

T. Hahn, Introduction to Mathematica and FORM – p.11

Map, Apply, and Pure Functions

Map applies a function to all elements of a list:

Map[f, {a, b, c}] ☞ {f[a], f[b], f[c]}

f /@ {a, b, c} ☞ {f[a], f[b], f[c]} — short form

Apply exchanges the head of a list:

Apply[Plus, {a, b, c}] ☞ a + b + c

Plus @@ {a, b, c} ☞ a + b + c — short form

Pure Functions are a concept from formal logic. A pure
function is defined ‘on the fly’:

(# + 1)& /@ {4, 8} ☞ {5, 9}

The # (same as #1) represents the first argument, and the &

defines everything to its left as the pure function.

T. Hahn, Introduction to Mathematica and FORM – p.12

List Operations

Flatten removes all sub-lists:

Flatten[f[x, f[y], f[f[z]]]] ☞ f[x, y, z]

Sort and Union sort a list. Union also removes duplicates:

Sort[{3, 10, 1, 8}] ☞ {1, 3, 8, 10}

Union[{c, c, a, b, a}] ☞ {a, b, c}

Prepend and Append add elements at the front or back:

Prepend[r[a, b], c] ☞ r[c, a, b]

Append[r[a, b], c] ☞ r[a, b, c]

Insert and Delete insert and delete elements:

Insert[h[a, b, c], x, {2}] ☞ h[a, x, b, c]

Delete[h[a, b, c], {2}] ☞ h[a, c]

T. Hahn, Introduction to Mathematica and FORM – p.13

More Speed Bumps

Consider:

tab = Table[Random[], {10^5}];

test1 := Block[{res = {}},

Do[AppendTo[res, tab[[i]]], {i, Length[tab]}];

res]

test2 := Block[{res = {}},

Do[res = {res, tab[[i]]}, {i, Length[tab]}];

Flatten[res]]

The timings:
Timing[test1][[1]] ☞ 19.47 Second

Timing[test2][[1]] ☞ 0.11 Second

T. Hahn, Introduction to Mathematica and FORM – p.14

Reference Count

Assignments that don’t change the content make no copy but
just increase the Reference Count.

a = x a x 1

b = a

a

b

x 2

++b

a

b

x 1

x + 1 1

T. Hahn, Introduction to Mathematica and FORM – p.15

Reference Count and Speed

test1 := ...

... AppendTo[res, tab[[i]]] ...

res

test2 :=

... res = {res, tab[[i]]} ...

Flatten[res]

test1 has to re-write the list every time an element is added:

{} {1} {1,2} {1,2,3} ...

test2 does that only once at the end with Flatten:

{} {{},1} {{{},1},2} {{{{},1},2},3} ...

T. Hahn, Introduction to Mathematica and FORM – p.16

Patterns

One of the most useful features is Pattern Matching:
_ — matches one object

__ — matches one or more objects

___ — matches zero or more objects

x_ — named pattern (for use on the r.h.s.)

x_h — pattern with head h

x_:1 — default value

x_?NumberQ — conditional pattern

x_ /; x > 0 — conditional pattern

Patterns take function overloading to the limit, i.e. functions
behave differently depending on details of their arguments:

Attributes[Pair] = {Orderless}

Pair[p_Plus, j_] := Pair[#, j]& /@ p

Pair[n_?NumberQ i_, j_] := n Pair[i, j]

T. Hahn, Introduction to Mathematica and FORM – p.17

Attributes

Attributes characterize a function’s behavior before and while
it is subjected to pattern matching. For example,

Attributes[f] = {Listable}

f[l_List] := g[l]

f[{1, 2}] ☞ {f[1], f[2]} — definition is never seen

Important attributes: Flat, Orderless, Listable,
HoldAll, HoldFirst, HoldRest.

The Hold... attributes are needed to pass variables by
reference:

Attributes[listadd] = {HoldFirst}

listadd[x_, other__] := x = Flatten[{x, other}]

This would not work if x were expanded before invoking
listadd, i.e. passed by value.

T. Hahn, Introduction to Mathematica and FORM – p.18

Memorizing Values

For longer computations, it may be desirable to ‘remember’
values once computed. For example:

fib[1] = fib[2] = 1

fib[i_] := fib[i] = fib[i - 2] + fib[i - 1]

fib[4] ☞ 3

?fib ☞ Global‘fib

fib[1] = 1

fib[2] = 1

fib[3] = 2

fib[4] = 3

fib[i_] := fib[i] = fib[i - 2] + fib[i - 1]

Note that Mathematica places more specific definitions before
more generic ones.

T. Hahn, Introduction to Mathematica and FORM – p.19

Decisions

Mathematica’s If Statement has three entries: for True, for
False, but also for Undecidable. For example:

If[8 > 9, yes, no] ☞ no

If[a > b, yes, no] ☞ If[a > b, yes, no]

If[a > b, yes, no, dunno] ☞ dunno

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ,
MatchQ, OrderedQ, . . . These functions have no undecided
state: in case of doubt they return False.

Conditional Patterns are usually faster:

good[a_, b_] := If[TrueQ[a > b], 1, 2]

— TrueQ removes ambiguity

better[a_, b_] := 1 /; a > b

better[a_, b_] = 2

T. Hahn, Introduction to Mathematica and FORM – p.20

Equality

Just as with decisions, there are several types of equality,
decidable and undecidable:

a == b ☞ a == b

a === b ☞ False

a == a ☞ True

a === a ☞ True

The full name of ‘===’ is SameQ and works as the Q indicates:
in case of doubt, it gives False. It tests for Structural Equality.

Of course, equations to be solved are stated with ‘==’:

Solve[x^2 == 1, x] ☞ {{x -> -1}, {x -> 1}}

Needless to add, ‘=’ is a definition and quite different:

x = 3 — assign 3 to x

T. Hahn, Introduction to Mathematica and FORM – p.21

Selecting Elements

Select selects elements fulfilling a criterium:

Select[{1, 2, 3, 4, 5}, # > 3 &] ☞ {4, 5}

Cases selects elements matching a pattern:

Cases[{1, a, f[x]}, _Symbol] ☞ {a}

Using Levels is generally a very fast way to extract parts:

list = {f[x], 4, {g[y], h}}

Depth[list] ☞ 4 — list is 4 levels deep (0, 1, 2, 3)

Level[list, {1}] ☞ {f[x], 4, {g[y], h}}

Level[list, {2}] ☞ {x, g[y], h}

Level[list, {3}] ☞ {y}

Level[list, {-1}] ☞ {x, 4, y, h}

Cases[expr, _Symbol, {-1}]//Union

— find all variables in expr
T. Hahn, Introduction to Mathematica and FORM – p.22

Mathematical Functions

Mathematica is equipped with a large set of mathematical
functions, both for symbolic and numeric operations.

Some examples:
Integrate[x^2, {x,3,5}] — integral

D[f[x], x] — derivative

Sum[i, {i,50}] — sum

Series[Sin[x], {x,1,5}] — series expansion

Simplify[(x^2 - x y)/x] — simplify

Together[1/x + 1/y] — put on common denominator

Inverse[mat] — matrix inverse

Eigenvalues[mat] — eigenvalues

PolyLog[2, 1/3] — polylogarithm

LegendreP[11, x] — Legendre polynomial

Gamma[.567] — Gamma function

T. Hahn, Introduction to Mathematica and FORM – p.23

Graphics

Mathematica has formidable graphics capabilities:

Plot[ArcTan[x], {x, 0, 2.5}]

ParametricPlot[{Sin[x], 2 Cos[x]}, {x, 0, 2 Pi}]

Plot3D[1/(x^2 + y^2), {x, -1, 1}, {y, -1, 1}]

ContourPlot[x y, {x, 0, 10}, {y, 0, 10}]

Output can be saved to a file with Export:

plot = Plot[Abs[Zeta[1/2 + x I]], {x, 0, 50}]

Export["zeta.eps", plot, "EPS"]

[?] Hint: To get a high-quality plot with proper LATEX labels,
don’t waste your time fiddling with the Plot options. Use the
psfrag LATEX package.

T. Hahn, Introduction to Mathematica and FORM – p.24

Numerics

Mathematica can express Exact Numbers, e.g.

Sqrt[2], Pi, 27

4

It can also do Arbitrary-precision Arithmetic, e.g.

N[Erf[28/33], 25] ☞ 0.7698368826185349656257148

But: Exact or arbitrary-precision arithmetic is fairly slow!
Mathematica uses Machine-precision Reals for fast arithmetic.

N[Erf[28/33]] ☞ 0.769836882618535

Arrays of machine-precision reals are internally stored as
Packed Arrays (this is invisible to the user) and in this form
attain speeds close to compiled languages on certain
operations, e.g. eigenvalues of a large matrix.

T. Hahn, Introduction to Mathematica and FORM – p.25

Compiled Functions

Mathematica can ‘compile’ certain functions for efficiency.

This is not compilation into assembler language, but rather a
strong typing of an expression such that intermediate data
types do not have to be determined dynamically.

fun[x_] := Exp[-((x - 3)^2/5)]

cfun = Compile[{x}, Exp[-((x - 3)^2/5)]]

time[f_] := Timing[Table[f[1.2], {10^5}]][[1]]

time[fun] ☞ 2.4 Second

time[cfun] ☞ 0.43 Second

Compile is implicit in many numerical functions, e.g. in Plot.

In a similar manner, Dispatch hashes long lists of rules
beforehand, to make the actual substitution faster.

T. Hahn, Introduction to Mathematica and FORM – p.26

Blocks and Modules

Block implements Dynamical Scoping
A local variable is known everywhere, but only for as long as the block

executes (“temporal localization”).

Module implements Lexical Scoping
A local variable is known only in the block it is defined in (“spatial

localization”). This is how scoping works in most high-level languages.

printa := Print[a]

a = 7

btest := Block[{a = 5}, printa]

mtest := Module[{a = 5}, printa]

btest ☞ 5

mtest ☞ 7

T. Hahn, Introduction to Mathematica and FORM – p.27

In C: Only Modules

Most languages have only Lexical Scoping:

#include <stdio.h>

static int a = 7;

static void printa() {

printf("%d\n", a);

}

int main() {

int a = 5;

printa();

return 0;

}

T. Hahn, Introduction to Mathematica and FORM – p.28

DownValues and UpValues

Definitions are usually assigned to the symbol being defined:
this is called DownValue.

For seldomly used definitions, it is better to assign the
definition to the next lower level: this is an UpValue.

x/: Plus[x, y] = z

?x ☞ Global‘x

x /: x + y = z

This is better than assigning to Plus directly, because Plus is
a very common operation.

In other words, Mathematica “looks” one level inside each
object when working off transformations.

T. Hahn, Introduction to Mathematica and FORM – p.29

Output Forms

Mathematica knows some functions to be Output Forms.
These are used to format output, but don’t “stick” to the
result:

{{1, 2}, {3, 4}}//MatrixForm ☞

(

1 2

3 4

)

Head[%] ☞ List — not MatrixForm

Some important output forms:
InputForm, FullForm, Shallow, MatrixForm, TableForm,
TeXForm, CForm, FortranForm.

TeXForm[alpha/(4 Pi)] ☞ \frac{\alpha}{4\pi}

CForm[alpha/(4 Pi)] ☞ alpha/(4.*Pi)

FullForm[alpha/(4 Pi)]

☞ Times[Rational[1, 4], alpha, Power[Pi, -1]]

T. Hahn, Introduction to Mathematica and FORM – p.30

MathLink

The MathLink API connects Mathematica with external C/C++
programs (and vice versa). J/Link does the same for Java.

:Begin:

:Function: copysign

:Pattern: CopySign[x_?NumberQ, s_?NumberQ]

:Arguments: {N[x], N[s]}

:ArgumentTypes: {Real, Real}

:ReturnType: Real

:End:

#include "mathlink.h"

double copysign(double x, double s) {

return (s < 0) ? -fabs(x) : fabs(x);

}

int main(int argc, char **argv) {

return MLMain(argc, argv);

}

For more details see arXiv:1107.4379.

T. Hahn, Introduction to Mathematica and FORM – p.31

Scripting Mathematica

Efficient batch processing with Mathematica:

Put everything into a script, using sh’s Here documents:

#! /bin/sh Shell Magic

math << _EOF_ start Here document (note the \)

AppendTo[$Echo, "stdout"];

<< FeynArts‘

top = CreateTopologies[...];

...

EOF end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.

T. Hahn, Introduction to Mathematica and FORM – p.32

Scripting Mathematica

• Everything contained in one compact shell script, even if
it involves several Mathematica sessions.

• Can combine with arbitrary shell programming, e.g. can
use command-line arguments efficiently:

#! /bin/sh

math -run "arg1=$1" -run "arg2=$2" ... << \END

...

END

• Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: -x flag makes shell echo every statement,
#! /bin/sh -x

T. Hahn, Introduction to Mathematica and FORM – p.33

bash Advertisement

bash exists on ‘any’ system (Linux, MacOS, Cygwin + Win 10)
(but not necessarily the same as /bin/sh)

Variable assignment: foo="1 2 3"

Variable substitution: ls "$foo" vs ls $foo

Default value: ls "${prefix:-my}"*.txt

Alternate value: gcc ${debug:+-Wall} -c file.c

Value modification: ps2pdf "$psfile" "${psfile/.ps/.pdf}"

Brace expansion: mv file.txt{,-old} and rm test{1..27}.o

(Integer) Arithmetic: $((n+5))

Loop over all C files: for f in *.c; do mv {,backup/}"$f"; done

Arithmetic loop: for((i=0; i<10; ++i)); do echo $i; done

Testing: test "$time" -gt 86400 && echo too late

[[$email =~ [-.%_a-z0-9]*@[-._a-z0-9]*]] || echo Invalid

T. Hahn, Introduction to Mathematica and FORM – p.34

Commercial Software?

Mathematica licenses cost money (∼ 5 ke/license).

While your Mathematica program runs, it blocks one license,
so don’t ‘just’ leave your Mathematica session open.

• Parallelize

• Script, Distribute, Automate

• Crunch numbers outside Mathematica

But: don’t overdo it.
If your calculation takes 5 min in total, don’t waste time
improving.

T. Hahn, Introduction to Mathematica and FORM – p.35

Parallel Kernels

Mathematica has built-in support for parallel Kernels:

LaunchKernels[];

ParallelNeeds["mypackage‘"];

data = << mydata;

ParallelMap[myfunc, data];

Parallel Kernels count toward Sublicenses.
Sublicenses = 8 × # interactive Licenses.

T. Hahn, Introduction to Mathematica and FORM – p.36

Parallel Functions

• More functions:

ParallelArray ParallelEvaluate ParallelNeeds

ParallelSum ParallelCombine ParallelTable

ParallelDo ParallelProduct ParallelTry

ParallelMap ParallelSubmit

DistributeDefinitions DistributeContexts

• Automatic parallelization (so-so success):
Parallelize[expr]

• ‘Intrinsic’ functions (e.g. Simplify) not parallelizable.

• Multithreaded computation partially automatic (OMP) for
some numerical functions, e.g. Eigensystem.

• Take care of side-effects of functions.

• Usual concurrency stuff (write to same file, etc).

T. Hahn, Introduction to Mathematica and FORM – p.37

Crunch Numbers outside Mathematica

• Conversion of Mathematica expression to Fortran/C
painless.

• Optimized output can easily run faster than in
Mathematica.

• Showstopper: Functions not available in Fortran/C, e.g.
NDSolve, Zeta. Maybe 3rd-party substitute (GSL, Netlib).

• Mathematica has built-in C-code generator, e.g.

myfunc = Compile[{{x}}, x^2 + Sin[x^2]];

Export["myfunc.c", myfunc, "C"]

But no standalone code: shared object for use with
Mathematica (i.e. also needs license).

• FormCalc’s code-generation functions produce optimized
standalone code.

T. Hahn, Introduction to Mathematica and FORM – p.38

Code-generation Functions

FormCalc’s code-generation functions are public and
disentangled from the rest of the code. They can be used to
write out an arbitrary Mathematica expression as optimized
Fortran or C code:

• handle = OpenCode["file.F"]
opens file.F as a Fortran file for writing,

• WriteExpr[handle, {var -> expr, . . .}]

writes out Fortran code which calculates expr and stores
the result in var,

• Close[handle]
closes the file again.

T. Hahn, Introduction to Mathematica and FORM – p.39

Code generation

Traditionally: Output in Fortran.
Code generator is meanwhile rather sophisticated, e.g.

• Expressions too large for Fortran are split into parts, as in

var = part1

var = var + part2

...

• High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

• Many ancillary functions make code generation versatile
and highly automatable, such that the resulting code
needs few or no changes by hand:
VarDecl, ToDoLoops, IndexIf, FileSplit, . . .

T. Hahn, Introduction to Mathematica and FORM – p.40

C Output

• Output in C99 makes integration into C/C++ codes
easier:

SetLanguage["C"]

Code structured by e.g.

• Loops and tests handled through macros, e.g.
LOOP(var, 1, 10, 1) . . . ENDLOOP(var)

• Introduced data types RealType and ComplexType for
better abstraction, can e.g. be changed to different
precision.

T. Hahn, Introduction to Mathematica and FORM – p.41

Mathematica ↔ Fortran

Mathematica → Fortran:

• Get FormCalc from https://feynarts.de/formcalc

• Write out arbitrary Mathematica expression:

h = OpenCode["file"]
WriteExpr[h, {var -> expr, ...}]

Close[h]

Fortran → Mathematica:

• Get https://feynarts.de/formcalc/FortranGet.tm

• Compile: mcc -o FortranGet FortranGet.tm

• Load in Mathematica: Install["FortranGet"]

• Read Fortran code: FortranGet["file.F"]

T. Hahn, Introduction to Mathematica and FORM – p.42

Mathematica Summary

• Mathematica makes it wonderfully easy, even for fairly
unskilled users, to manipulate expressions.

• Most functions you will ever need are already built in.
Many third-party packages are available at MathSource,
https://library.wolfram.com/infocenter/MathSource.

• When using its capabilities (in particular list-oriented
programming and pattern matching) right, Mathematica
can be very efficient.
Wrong: FullSimplify[veryLongExpression].

• Mathematica is a general-purpose system, i.e. convenient
to use, but not ideal for everything.
For example, in numerical functions, Mathematica
usually selects the algorithm automatically, which may
or may not be a good thing.

T. Hahn, Introduction to Mathematica and FORM – p.43

Books

• Michael Trott
The Mathematica Guidebook
for {Programming, Graphics,
Numerics, Symbolics} (4 vol)
Springer, 2004–2006.

• Andrei Grozin
Introduction to Mathematica for
Physicists
Springer, 2013.

T. Hahn, Introduction to Mathematica and FORM – p.44

FORM

T. Hahn, Introduction to Mathematica and FORM – p.45

FORM Essentials

• A FORM program is divided into Modules.
Simplification happens only at the end of a module.

• FORM is strongly typed –
all variables have to be declared:
Symbols, Vectors, Indices, (N)Tensors, (C)Functions.

• FORM works on one term at a time:
Can do “Expand[(a + b)^2]” (local operation) but
not “Factor[a^2 + 2 a b + b^2]” (global operation).

• FORM is mainly strong on polynomial expressions.

• FORM program + documentation + course available from
https://nikhef.nl/∼form.

T. Hahn, Introduction to Mathematica and FORM – p.46

A Simple Example in FORM

Symbols a, b, c, d;

Local expr = (a + b)^2;

id b = c - d;

print;

.end

Running this program gives:
FORM by J.Vermaseren,version 4.0(Mar 1 2013) Run at: Tue May 8 10:14:12 2013

Symbols a, b, c, d;

Local expr = (a + b)^2;

id b = c - d;

print;

.end

Time = 0.00 sec Generated terms = 6

expr Terms in output = 6

Bytes used = 104

expr =

d^2 - 2*c*d + c^2 - 2*a*d + 2*a*c + a^2;

0.00 sec out of 0.00 sec

T. Hahn, Introduction to Mathematica and FORM – p.47

Module Structure

A FORM program consists of Modules. A Module is
terminated by a “dot” statement (.sort, .store, .end, . . .)

• Generation Phase (“normal” statements)
During the execution of “normal” statements terms are
only generated. This is a purely local operation – only
one term at a time needs to be looked at.

• Sorting Phase (“dot” statements):
At the end of the module all terms are inspected and
similar terms collected. This is the only ‘global’ operation
which requires FORM to look at all terms
‘simultaneously.’

Closest in Mathematica: use inert functions instead of
Mathematica’s ones, e.g. expr /. Plus -> plus.

T. Hahn, Introduction to Mathematica and FORM – p.48

Sorting and Generating
S

e
c
o
n

d
 m

o
d

u
le

F
ir

s
t

m
o
d

u
le

G e n e r a t i n g

S o r t i n g

First
term

Second
term

G e n e r a t i n g

S o r t i n g

id x = a + b;

.sort

endif;

.end

if(count(b,1)==1);
multiply 4*a/b;

print;

l expr = a*x + x^2;

+14*a^2 +b^2

a*x +x^2

+2*a^2 +3*a*b +b^2

+a^2 +a*b +a^2 +a*b +a*b +b^2

+2*a^2 +12*a^2 +b^2

T. Hahn, Introduction to Mathematica and FORM – p.49

Id-Statement

The central statement in FORM is the id-Statement:

a^3*b^2*c

id a*b = d; ☞ a*c*d^2 — multiple match

once a*b = d; ☞ a^2*b*c*d — single match

only a*b = d; ☞ a^3*b^2*c — no exact match possible

id does not, by default, match negative powers:

x + 1/x

id x = y; ☞ x^-1 + y

id x^n? = y^n; ☞ y^-1 + y — wildcard exponent

T. Hahn, Introduction to Mathematica and FORM – p.50

Patterns

Patterns are possible, too:

f(a, b, c) + f(1, 2, 3)

id f(a, b, c) = 1; ☞ 1 + f(1, 2, 3)

— explicit match

id f(a?, b?, c?) = 1; ☞ 2

— wildcard match

id f(?a) = g(?a); ☞ g(a, b, c) + g(1, 2, 3)

— group-wildcard match

id f(a?int_, ?a) = a; ☞ 1 + f(a, b, c)

— constrained wildcard

id f(a?{a,b}, ?a) = a; ☞ a + f(1, 2, 3)

— alternatives

T. Hahn, Introduction to Mathematica and FORM – p.51

Bracketing, Collecting

bracket puts specified items outside the bracket.
antibracket puts specified items inside the bracket.
collect moves the bracket contents to a function.

Symbols a, b, c, d;

Local expr = (a + b)*(c + d);

print;

.sort
expr = a*c + a*d + b*c + b*d;

bracket a, b;

print;

.sort
expr = + a * (c + d)

+ b * (c + d);

CFunction f;

collect f;

bracket f;

print;

.end
expr = + f(c + d) * (a + b);

T. Hahn, Introduction to Mathematica and FORM – p.52

Preprocessor

FORM has a Preprocessor which operates before the compiler.

Many constructs are familiar from C, but the FORM
preprocessor can do more:

• #define, #undefine, #redefine,

• #if{,def,ndef} . . . #else . . . #endif,

• #switch . . . #endswitch,

• #procedure . . . #endprocedure, #call,

• #do . . . #enddo,

• #write, #message, #system.

The preprocessor works across modules, e.g. a do-loop can
contain a .sort statement.

T. Hahn, Introduction to Mathematica and FORM – p.53

Dollar Variables

• Not strongly typed, can contain ‘everything.’

• Preserved across module boundaries.

• Can be operated on during preprocessing (#$X = ...)
and normal operation ($X = ...).

• Can receive matched pattern: once f(x?$var) = ...

• No arrays.

s a, b;

L F = (a + b)^6;

#$n = 0;

$n = $n + 1;

print "term %$ is %t", $n;

.end

☞
term 1 is + a^6

term 2 is + 6*a^5*b

term 3 is + 15*a^4*b^2

term 4 is + 20*a^3*b^3

term 5 is + 15*a^2*b^4

term 6 is + 6*a*b^5

term 7 is + b^6

T. Hahn, Introduction to Mathematica and FORM – p.54

Special Commands for High-Energy Physics

• Gamma matrices: g_, g5_, g6_, g7_.

• Fermion traces: trace4, tracen, chisholm.

• Levi-Civita tensors: e_, contract.

• Index properties: {,anti,cycle}symmetrize.

• Dummy indices: sum, replaceloop.
(e.g. ∑i aibi + ∑j ajbj = 2∑i aibi)

• Very efficient combinatorics: dd_, distrib_.

T. Hahn, Introduction to Mathematica and FORM – p.55

FORM Summary

• FORM is a freely available Computer Algebra System
with some specialization on High Energy Physics.

• Programming in FORM takes more ‘getting used to’ than
in Mathematica. Also, FORM has no GUI or other
programming aids.

• FORM programs are module oriented with global
(= costly) operations occurring only at the end of module.
A strategical choice of these points optimizes
performance.

• FORM is much faster than Mathematica on polynomial
expressions and can handle in particular huge (GB)
expressions.

T. Hahn, Introduction to Mathematica and FORM – p.56

FORM ↔ Mathematica

Mathematica → FORM:

• Get FormCalc from https://feynarts.de/formcalc

• After compilation the ToForm utility should be in the
executables directory (e.g. Linux-x86-64):

ToForm < file.m > file.frm

FORM → Mathematica:

• Get https://feynarts.de/formcalc/FormGet.tm

• Compile it with mcc -o FormGet FormGet.tm

• Load it in Mathematica with Install["FormGet"]

• Read a FORM output file: FormGet["file.out"]
Pipe output from FORM: FormGet["!form file.frm"]

T. Hahn, Introduction to Mathematica and FORM – p.57

Exercise

Write a Mathematica function that works somewhat similar to
Select. It should, however, not just give back the list of items
for which the test function is true, but

{ list of items for which test is True,

list of items for which test is False}

Try to find a version in which the test function is not
evaluated more than once per item!

https://feynarts.de/lectures/mmaform.pdf

https://feynarts.de/lectures/intro_math.pdf

https://feynarts.de/lectures/mmaform.tar.gz

T. Hahn, Introduction to Mathematica and FORM – p.58

	Computer Algebra Systems
	Mathematica vs. FORM
	
	Mathematica Components
	Why I don't like the Frontend (much)
	Expert Systems
	Immediate and Delayed Assignment
	Almost everything is a List
	The Pillars of Mathematica
	List-oriented Programming
	Map, Apply, and Pure Functions
	List Operations
	More Speed Bumps
	Reference Count
	Reference Count and Speed
	Patterns
	Attributes
	Memorizing Values
	Decisions
	Equality
	Selecting Elements
	Mathematical Functions
	Graphics
	Numerics
	Compiled Functions
	Blocks and Modules
	In C: Only Modules
	DownValues and UpValues
	Output Forms
	MathLink
	Scripting Mathematica
	Scripting Mathematica
	bash Advertisement
	Commercial Software?
	Parallel Kernels
	Parallel Functions
	Crunch Numbers outside Mathematica
	Code-generation Functions
	Code generation
	C Output
	Mathematica $leftrightarrow $ Fortran
	Mathematica Summary
	Books
	
	FORM Essentials
	A Simple Example in FORM
	Module Structure
	Sorting and Generating
	Id-Statement
	Patterns
	Bracketing, Collecting
	Preprocessor
	Dollar Variables
	Special Commands for High-Energy Physics
	FORM Summary
	FORM $leftrightarrow $ Mathematica
	Exercise

